Skip to main content
Log in

Synthesis, characterization, drug-likeness properties and determination of the in vitro antioxidant and cytotoxic activities of new 1,3,4-oxadiazole derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of new 1,3,4-oxadiazole derivatives were synthesized and evaluated for their antioxidant, cytotoxic, and apoptosis activities. Antioxidant activity was determined in vitro using free radical scavenging (2,2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power assays. Most of the synthesized compounds exhibited significant antioxidant activities. Compound 3 showed the most potent antioxidant activity, comparable to the antioxidants used as positive controls—quercetin, BHT, trolox, rutin, and ascorbic acid. Compound 1 displayed high radical scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl assay, with an half-maximum inhibitory concentration (IC50) = 2.22 ± 0.01 µg/mL. Cytotoxic activities were evaluated in vitro against three human cancer cell lines (BxPC-3, MCF-7, MDA-MB-231) and one normal cell line (hTERT-HPNE) using the MTT assay. Compound 4e showed the most potent cytotoxic activity against MDA-MB-231 (IC50 = 21.40 ± 1.22 µM), and compound 4c showed the most potent activity against BxPC-3 (IC50 = 26.17 ± 1.10 µM). Further investigation on BxPC-3 cells showed compound 4c induces apoptosis and cell cycle arrest at G0/G1 phase. The drug-likeness parameters of these oxadiazole derivatives were evaluated according to the Lipinski rule, the Veber rule, and Egan’s model. All of the derivatives were found to have good predicted absorption characteristics, with the exception of compound 4d due to its high lipophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BDH:

bond-dissociation enthalpies

BxPC-3:

human primary pancreatic adenocarcinoma

CoQ:

coenzyme q10

δ :

chemical shift in parts per million

J :

coupling constant (in nmr spectrometry)

DPPH:

2,2-diphenyl-1-picrylhydrazyl radical

FRAP:

ferric ion reducing antioxidant power

HBA:

number of hydrogen bond acceptor

HBD:

number of hydrogen bond donor

HAT:

hydrogen atom transfer

hTERT-HPNE:

normal pancreas cell line

IC50 :

half-maximum inhibitory concentration

log p:

logarithm of partition coefficient

MCF-7:

human breast adenocarcinoma cells

MDA-MB-231:

human breast adenocarcinoma

MTT assay:

cell proliferation colorimetric assay

References

  • Alam MS, Choi J-H, Lee D-U (2012) Synthesis of novel Schiff base analogues of 4-amino-1, 5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorg Med Chem 20:4103–4108

    Article  CAS  PubMed  Google Scholar 

  • Benzie IF, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bergström CA, Holm R, Jørgensen SA, Andersson SB, Artursson P, Beato S, Borde A, Mullertz A (2013) Early pharmaceutical profiling to predict oral drug absorption: Current status and unmet needs. Eur J Pharm Sci 57:173–199

    Article  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Derochette S, Franck T, Mouithys-Mickalad A, Ceusters J, Deby-Dupont G, Lejeune J-P, Neven P, Serteyn D (2013) Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils. Chem Biol Interact 206:186–193

    Article  CAS  PubMed  Google Scholar 

  • Desai N, Bhatt N, Somani H, Trivedi A (2013) Synthesis, antimicrobial and cytotoxic activities of some novel thiazole clubbed 1, 3, 4-oxadiazoles. Eur J Med Chem 67:54–59

    Article  CAS  PubMed  Google Scholar 

  • Egan WJ, Lauri G (2002) Prediction of intestinal permeability. Adv Drug Deliver Rev 54:273–289

    Article  CAS  Google Scholar 

  • Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877

    Article  CAS  PubMed  Google Scholar 

  • Ferrari E, Lucca C, Foiani MA (2010) Lethal combination for cancer cells: synthetic lethality screenings for drug discovery. Eur J Cancer 46:2889–2895

    Article  PubMed  Google Scholar 

  • Fuchs-Tarlovsky V (2013) Role of antioxidants in cancer therapy. Nutrition 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Gerhäuser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J, Liu G-Y, Sitthimonchai S, Frank N (2003) Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat Res 523:163–172

    Article  PubMed  Google Scholar 

  • Gozzo A, Lesieur D, Duriez P, Fruchart J-C, Teissier E (1999) Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model. Free Radic Biol Med 26:1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Hegazy GH, Ali HI (2012) Design, synthesis, biological evaluation, and comparative Cox1 and Cox2 docking of p-substituted benzylidenamino phenyl esters of ibuprofenic and mefenamic acids. Bioorg Med Chem 20:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mole Oncol 6:155–176

    Article  CAS  Google Scholar 

  • Husain A, Ahmad A, Alam MM, Ajmal M, Ahuja P (2009) Fenbufen based 3-[5-(substituted aryl)-1, 3, 4-oxadiazol-2-yl]-1-(biphenyl-4-yl) propan-1-ones as safer antiinflammatory and analgesic agents. Eur J Med Chem 44:3798–3804

    Article  CAS  PubMed  Google Scholar 

  • Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Method 2:41–60

    Article  Google Scholar 

  • Kotaiah Y, Harikrishna N, Nagaraju K, Venkato RC (2012) Synthesis and antioxidant activity of 1, 3, 4-oxadiazole tagged thieno [2, 3-d] pyrimidine derivatives. Eur J Med Chem 58:340–345

    Article  CAS  PubMed  Google Scholar 

  • Kundu JK, Surh Y-J (2012) Emerging avenues linking inflammation and cancer. Free Radic Biol Med 52:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev 23:3–25

    Article  CAS  Google Scholar 

  • Lipinski C, Lombardo F, Dominy B, Feeney P (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev 46:3–26

    Article  CAS  Google Scholar 

  • Looi CY, Moharram B, Paydar M, Wong YL, Leong KH, Mohamad K, Arya A, Wong WF, Mustafa MR (2013) Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. BMC Complement Altern Med 13:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Malich G, Markovic B, Winder C (1997) The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 124:179–192

    Article  CAS  PubMed  Google Scholar 

  • Nordberg J, Arnér ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  PubMed  Google Scholar 

  • Omar F, Mahfouz N, Rahman M (1996) Design, synthesis and antiinflammatory activity of some 1, 3, 4-oxadiazole derivatives. Eur J Med Chem 31:819–825

    Article  CAS  PubMed  Google Scholar 

  • Petit J, Meurice N, Kaiser C, Maggiora G (2012) Softening the Rule of Five - where to draw the line? Bioorg Med Chem 20:5343–5351

    Article  CAS  PubMed  Google Scholar 

  • Pospíšil J (1993) Chemical and photochemical behaviour of phenolic antioxidants in polymer stabilization: a state of the art report, part II. Polym Degrad Stabil 39:103–115

    Article  Google Scholar 

  • Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv 32:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agr Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  • Priyadarsini KI, Maity DK, Naik GH, Sudheer KM, Unnikrishnan MK, Satav JG, Mohan H (2003) Role of phenolic OH and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med 35:475–484

    Article  CAS  PubMed  Google Scholar 

  • Rapolu S, Alla M, Bommena VR, Ramalinga M, Nishant J, Venkata RB, Madhava RB (2013) Synthesis and biological screening of 5-(alkyl (1H-indol-3-yl))-2-(substituted)-1, 3, 4-oxadiazoles as antiproliferative and anti-inflammatory agents. Eur J Med Chem 66:91–100

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Wang R, Komatsu K, Patricia B-K, Yegor Z, Charles E, Csaba C, Zoltan A, Eric JL (2002) Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J Med Chem 45:410–419

    Article  CAS  PubMed  Google Scholar 

  • Revanasiddappa B, Subrahmanyam E (2009) Chloramine-T mediated synthesis of 1, 3, 4-oxadiazoles. Orient J Chem 25:707–710

    CAS  Google Scholar 

  • Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res Fund Mol Mech Mut 579:200–213

    Article  CAS  Google Scholar 

  • Suan J, Li M-H, Qian S-S, Guo F-J, Dang X-F, Wang X-M, Xue Y-R, Zhu H-L (2013) Synthesis and antitumor activity of 1, 3, 4-oxadiazole possessing 1, 4-benzodioxan moiety as a novel class of potent methionine aminopeptidase type II inhibitors. Bioorg Med Chem Lett 23:2876–2879

    Article  Google Scholar 

  • Tang JJ, Fan GJ, Dai F, Ding DJ, Wang Q, Lu DL, Ran RL, Zhou B (2011) Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radic Biol Med 50:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Tang A, Lien EJ, Lai MM (1985) Optimization of the Schiff bases of N-hydroxy-N’-aminoguanidine as anticancer and antiviral agents. J Med Chem 28:1103–1106

    Article  CAS  Google Scholar 

  • Tung Y-T, Wu JH, Kuo YH, Chang ST (2007) Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresource Technol 98:1120–1123

    Article  CAS  Google Scholar 

  • Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Vineis P, Wild CP (2014) Global cancer patterns: causes and prevention. Lancet 383:549–557

    Article  PubMed  Google Scholar 

  • Wils P, Warnery A, Phung-Ba V, Legrain S, Scherman D (1994) High lipophilicity decreases drug transport across intestinal epithelial cells. J Pharmacol Exp Ther 269:654–658

    CAS  PubMed  Google Scholar 

  • Wu Y, Antony S, Meitzler JL, Doroshow JH (2014) Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 345:164–173

    Article  CAS  PubMed  Google Scholar 

  • Yehye WA, Abdul RN, Alhadi A, Khaledi H, Ng SW, Ariffin A (2012) Butylated hydroxytoluene analogs: synthesis and evaluation of their multipotent antioxidant activities. Molecules 17:7645–7665

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-Z, Mulholland N, Beattie D, Irwin D, Gu Y-C, Chen Q, Yang G-F, Clough J (2013) Synthesis and antifungal activity of 3-(1, 3, 4-oxadiazol-5-yl)-indoles and 3-(1, 3, 4-oxadiazol-5-yl) methyl-indoles. Eur J Med Chem 63:22–32

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-Q, Wilkinson B (2007) Drug discovery beyond the ‘Rule-Of-Five’. Curr Opin Biotechnol 18:478–488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Malaya for UMRG grants (RP021B-14AFR), PPP grant (PG033-2012B), PRPUM grant (CG021-2013) and the Ministry of Higher Education of Malaysia grant (FP024-2014A) for supporting this study. The authors acknowledge CRYSTAL for providing the computational resources for computational intensive calculation and model building.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azhar Ariffin or Kok Hoong Leong.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest in this work.

Electronic SupplementaryMaterial

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarbahjat, N., Ariffin, A., Abdullah, Z. et al. Synthesis, characterization, drug-likeness properties and determination of the in vitro antioxidant and cytotoxic activities of new 1,3,4-oxadiazole derivatives. Med Chem Res 25, 2015–2029 (2016). https://doi.org/10.1007/s00044-016-1660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1660-5

Keywords

Navigation