Medicinal Chemistry Research

, Volume 24, Issue 10, pp 3760–3771 | Cite as

Microwave-assisted synthesis of benzenesulfonohydrazide and benzenesulfonamide cyclic imide hybrid molecules and their evaluation for anticancer activity

  • Anuj Kumar
  • Nikhil Kumar
  • Partha Roy
  • S. M. Sondhi
  • Anuj Sharma
Original Research


4-Methyl benzenesulfonohydrazide (1a) and 4-methoxy benzenesulfonohydrazide (1b) on condensation with furan-2,5-dione, hexahydroisobenzofuran-1,3-dione, 3a,4,7,7a-tetrahydroisobenzofuran-1,3-dione and isochroman-1,3-dione under microwave irradiation condition gave corresponding condensation products 2a,b; 3a,b; 4a,b and 5a,b, respectively, in good yields. Microwave-assisted condensation of 4-amino-N-(thiazol-2-yl)benzenesulfonamide (6a), 4-amino-N-(pyrimidin-2-yl)benzenesulfonamide (6b) and 4-amino-N-(4-methyl pyrimidin-2-yl)benzenesulfonamide (6c) with furan-2,5-dione, hexahydroisobenzofuran-1,3-dione, 3a,4,7,7a-tetrahydroisobenzofuran-1,3-dione and isochroman-1,3-dione gave corresponding condensation products 7ac, 8ac, 9ac and 10ac, respectively, in good yields. All these compounds, i.e., 2a,b; 3a,b; 4a,b; 5a,b; 7ac; 8ac; 9ac and 10ac, were screened for in vitro anticancer activity against five human cancer cell lines, i.e., breast (T47D), lung (NCl H-522), colon (HCT-15), ovary (PA-1) and liver (Hep G2). Compounds 7c and 9c exhibited good anticancer activity against ovary (PA-1) (IC50 value 8.12 ± 1.83 µM) and liver (Hep G2) (IC50 value 4 ± 1.9 µM) cancer cell lines, respectively.


Microwave Benzenesulfonohydrazide Benzenesulfonamide Anticancer activity 



We are thankful to technical staff of the Chemistry Department, IIT Roorkee, for spectroscopic studies and elemental analysis. Thanks are also due to Head IIC for providing NMR facility. Mr. Anuj Kumar is thankful to MHRD, New Delhi, for financial assistance.

Supplementary material

44_2015_1414_MOESM1_ESM.docx (5.9 mb)
Supplementary material 1 (DOCX 6066 kb)


  1. Abdel-Aziz AA-M, El-Azab AS, Attia SM, Al-Obaid AM, Al-Omar MA, El-Subbagh HI (2011) Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipidemic agents. Eur J Med Chem 46:4324–4329CrossRefPubMedGoogle Scholar
  2. Al-Salahi RA, Al-Omar MA, Amr AE-GE (2010) Synthesis of chiral macrocyclic or linear pyridine carboxamides from pyridine-2,6-dicarbonyl dichloride as antimicrobial agents. Molecules 15:6588–6597CrossRefPubMedGoogle Scholar
  3. Amin KM, Eissa AAM, Abou-Seri SM, Awadallah FM, Hassan GS (2013) Synthesis and biological evaluation of novel coumarine-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur J Med Chem 60:187–198CrossRefPubMedGoogle Scholar
  4. Arkinstall S, Halazy S, Church D, Camps M, Rueckle T, Gotteland J-P, Biamonte M (2001) Preparation of N-thienylsulfonylthiazolecarbohydrazides and analogs as c-Jun N-terminal kinase inhibitors. WO 2001023382(A1):20010405Google Scholar
  5. Arya S, Kumar N, Roy P, Sondhi SM (2013) Synthesis of amidine and bis amidine derivatives and their evaluation for anti-inflammatory and anticancer activity. Eur J Med Chem 59:7–14CrossRefPubMedGoogle Scholar
  6. Barakat MZ, Shehab SK, El-Sadr MM (1957) Preparation of N1-substituted N4N4-phthaloyl-, -succinoyl-, and -adipoylsulfanilamides. J Chem Soc 5092–5093Google Scholar
  7. Bezuglyi PA, Chernykh VP, Drogovoz SM, Bereznyakova AI, Makurina VI, Voronina LN (1979) Synthesis and biological activity of N-o-carboxyphenylamides of β-N1 arenesulfohydrazide of oxalic acid. Khim Farm Zh+ 13:36–39Google Scholar
  8. Bock MG, Kuduk SD, Wood MR (2006) Biphenylmethyl benzamide derivatives as bradykinin B1 antagonists, and their preparation, pharmaceutical compositions and use as mediators of chronic pain and inflammation. US 20060106011 A1 20060518Google Scholar
  9. Cheng M-F, Hung M-S, Song J-S, Lin S-Y, Liao F-Y, Wu M-H, Hsiao W, Hsieh C-L, Wu J-S, Chao Y-S, Shih C, Wu S-Y, Ueng S-H (2014) Discovery and structure–activity relationships of phenyl benzenesulfonylhydrazides as novel indoleamine 2,3-dioxygenase inhibitors. Bioorg Med Chem Lett 24:3403–3406CrossRefPubMedGoogle Scholar
  10. Choi J, Wilson TL, Ly AM, Okoro CO, Onubogu UC, Redda KK (1995) Synthesis of some N-(phenylsulfonylamino)-1,2,3,6-tetrahydropyridines as potential anti-inflammatory agents. Med Chem Res 5:281–295Google Scholar
  11. Dixit RB, Vanparia SF, Patel TS, Jagani CL, Doshi HV, Dixit BC (2010) Synthesis and antimicrobial activities of sulfonohydrazide-substituted 8 hydroxyquinoline derivative and its oxinates. Appl Organomet Chem 24:408–413Google Scholar
  12. Dragostin OM, Lupascu F, Vasile C, Mares M, Nastasa V, Moraru RF, Pieptu D, Profire L (2013) Synthesis and Biological Evaluation of New 2-Azetidinones with Sulfonamide Structures. Molecules 18:4140–4157CrossRefPubMedGoogle Scholar
  13. Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Sokovic M, Glamocilija J, Ciric A (2008) Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg Med Chem 16:1150–1161CrossRefPubMedGoogle Scholar
  14. Faidallah HM, Khan KA (2012) Synthesis and biological evaluation of new barbituric and thiobarbituric acid fluoro analogs of benzenesulfonamides as antidiabetic and antibacterial agents. J Fluorine Chem 142:96–104CrossRefGoogle Scholar
  15. Frlan R, Kovac A, Blanot D, Gobec S, Pecar S, Obreza A (2011) Design, synthesis and in vitro biochemical activity of novel amino acid sulfonohydrazide inhibitors of MurC. Acta Chim Slov 58:295–310PubMedGoogle Scholar
  16. Ghorab MM, Alsaid MS, Ceruso M, Nissan YM, Supuran CT (2014a) Carbonic anhydrase inhibitors: synthesis, molecular docking, cytotoxic and inhibition of the human carbonic anhydrase isoforms I, II, IX, XII with novel benzenesulfonamides incorporating pyrrole, pyrrolopyrimidine and fused pyrrolopyrimidine moieties. Bioorg Med Chem 22:3684–3695CrossRefPubMedGoogle Scholar
  17. Ghorab MM, Ragab FA, Heiba HI, Bayomi AA (2014b) Novel quinazoline derivatives bearing a sulfapyridine moiety as anticancer and radiosensitizing agents. J Heterocyclic Chem. 51:E255–E262CrossRefGoogle Scholar
  18. Gul M, Kulu I, Peksel A, Ocal N (2013) Evaluation of the antioxidative properties of N-Acylamino-substituted tricyclic imides. E-J Chem 2013:920130Google Scholar
  19. Ishikawa M, Fujimoto M, Sakai M, Matsumoto A (1968) Intramolecular hydrazides and hydroxamates. II. Synthesis of homologs of cis-2-amino-1,3-perhydroisoindolinedione. Chem Pharm Bull 16:618–621CrossRefGoogle Scholar
  20. Jia Y, Zhang J, Feng J, Xu F, Pan H, Xu W (2014) Design, synthesis and biological evaluation of pazopanib derivatives as antitumor agents. Chem Biol Drug Des 83:306–316CrossRefPubMedGoogle Scholar
  21. Keche AP, Hatnapure GD, Tale RH, Rodge AH, Kamble VM (2012) Synthesis, anti inflammatory and antimicrobial evaluation of novel 1-acetyl-3,5-diaryl-4,5-dihydro (1H) pyrazole derivatives bearing urea, thiourea and sulfonamide moieties. Bioorg Med Chem Lett 22:6611–6615CrossRefPubMedGoogle Scholar
  22. Kendall JD, Rewcastle GW, Frederick R, Mawson C, Denny WA, Marshall ES, Baguley BC, Chaussade C, Jackson SP, Shepherd PR (2007) Synthesis, biological evaluation and molecular modeling of sulfonohydrazides as selective PI3 K p110α inhibitors. Bioorg Med Chem 15:7677–7687CrossRefPubMedGoogle Scholar
  23. Kumar S, Kumar N, Roy P, Sondhi SM (2013) Synthesis, anti-inflammatory, and antiproliferative activity evaluation of isoindole, pyrrolopyrazine, benzimidazoisoindole, and benzimidazopyrrolopyrazine derivatives. Mol Divers 17:753–766CrossRefPubMedGoogle Scholar
  24. Kumar M, Ramasamy K, Mani V, Mishra RK, Majeed ABA, Clercq ED, Narasimhan B (2014a) Synthesis, antimicrobial, anticancer, antiviral evaluation and QSAR studies of 4-(1-aryl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzene sulfonamides. Arabian J Chem 7:396–408CrossRefGoogle Scholar
  25. Kumar S, Kumar N, Roy P, Sondhi SM (2014b) Efficient synthesis of heterocyclic compounds derived from 2,6-dioxopiperazine derivatives and their evaluation for anti-inflammatory and anticancer activities. Med Chem Res 23:3953–3969CrossRefGoogle Scholar
  26. Li Q, Fang H, Wang X, Hu L, Xu W (2009) Novel cyclic-imide peptidomimetics as aminopeptidase N inhibitors. Design, chemistry and activity evaluation. Part I. Eur J Med Chem 44:4819–4825CrossRefPubMedGoogle Scholar
  27. Machado KE, de Oliveira KN, Santos-Bubniak L, Licínio MA, Nunes RJ, Santos-Silva MC (2011) Evaluation of apoptotic effect of cyclic imide derivatives on murine B16F10 melanoma cells. Bioorg Med Chem 19:6285–6291CrossRefPubMedGoogle Scholar
  28. Machado KE, de Oliveira KN, Andreossi HMS, Bubniak LDS, de Moraes ACR, Gaspar PC, Andrade EDS, Nunes RJ, Santos-Silva MC (2013) Apoptotic events induced by maleimides on human acute leukemia cell lines. Chem Res Toxicol 26:1904–1916CrossRefPubMedGoogle Scholar
  29. Mahdavi M, Shirazi MS, Taherkhani R, Saeedi M, Alipour E, Moghadam FH, Moradi A, Nadri H, Emami S, Firoozpour L, Shafiee A, Foroumadi A (2014) Synthesis, biological evaluation and docking study of 3-aroyl-1-(4-sulfamoylphenyl)thiourea derivatives as 15-lipoxygenase inhibitors. Eur J Med Chem 82:308–313CrossRefPubMedGoogle Scholar
  30. Mahmoud RF, El-Shahawi MM, El-Bordany EAE-F, El-Azm FSMA (2010) Novel isoquinoline derivatives from isochromen-1,3-dione. Eur J Chem 1:134–139CrossRefGoogle Scholar
  31. Makurina VI, Chernykh VP, Gritsenko IS, Knyaz EM (1986) Reactivity of N (arylsulfonamido)succinimides. Zh Org Khim+ 22:2155–2160Google Scholar
  32. Mcevoy GK (ed) (1992) AHFS drug information, pp 484–610Google Scholar
  33. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  34. Ohsawa F (1951) Sulfasuxidine. JP 26000894(B4):19510223. Chem Abstr 47:25474Google Scholar
  35. Prado SRT, Cechinel-Filho V, Campos-Buzzi F, Correa R, Cadena SMCS, Martinelli de Oliveira MB (2004) Biological evaluation of some selected cyclic imides: mitochondrial effects and in vitro cytotoxicity. Z Naturforsch C 59:663–672PubMedGoogle Scholar
  36. Reid E, Reynolds JA, Seymour DE (1947) Succinimidobenzenesulfonamides. GB 595039:19471125Google Scholar
  37. Seliga R, Pilatova M, Sarissky M, Viglasky V, Walko V, Mojzis J (2013) Novel naphthalimide polyamine derivatives as potential antitumor Agents. Mol Biol Rep 40:4129–4137CrossRefPubMedGoogle Scholar
  38. Sirajuddin M, Uddin N, Ali S, Tahir MN (2013) Potential bioactive Schiff base compounds: synthesis, characterization, X-ray structures, biological screenings and interaction with Salmon sperm DNA. Spectrochim Acta A 116:111–121CrossRefGoogle Scholar
  39. Sondhi SM, Rani R, Singh J, Roy P, Agrawal SK, Saxena AK (2010) Solvent free synthesis, anti-inflammatory and anticancer activity evaluation of tricyclic and tetracyclic benzimidazole derivatives. Bioorg Med Chem Lett 20:2306–2310CrossRefPubMedGoogle Scholar
  40. Sondhi SM, Rani R, Roy P, Agrawal SK, Saxena AK (2011) Synthesis, Anti-Inflammatory, and Anticancer Activity Evaluation of Some Heterocyclic Amidine and Bis-Amidine Derivatives. J Heterocyclic Chem. 48:921–926CrossRefGoogle Scholar
  41. Wang Z-C, Duan Y-T, Qiu H-Y, Huang W-Y, Wang P-F, Yan X-Q, Zhang S-F, Zhu H-L (2014) Novel metronidazole-sulfonamide derivatives as potent and selective carbonic anhydrase inhibitors: design, synthesis and biology analysis. RSC Adv. 4:33029–33038CrossRefGoogle Scholar
  42. West PJ, Cornell CL (1998) Preparation of fungicidal N-aryl five-membered cyclic imides. WO 9804525(A1):19980205Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anuj Kumar
    • 1
  • Nikhil Kumar
    • 2
  • Partha Roy
    • 2
  • S. M. Sondhi
    • 1
  • Anuj Sharma
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology-RoorkeeRoorkeeIndia
  2. 2.Department of BiotechnologyIndian Institute of Technology-RoorkeeRoorkeeIndia

Personalised recommendations