Advertisement

Medicinal Chemistry Research

, Volume 24, Issue 8, pp 3272–3282 | Cite as

Synthesis of acridine cyclic imide hybrid molecules and their evaluation for anticancer activity

  • Anuj Kumar
  • Nikhil Kumar
  • Partha Roy
  • S. M. Sondhi
  • Anuj SharmaEmail author
Original Research

Abstract

9-Amino acridine derivatives (1ae) on condensation with dihydrofuran-2,5-dione, hexahydroisobenzofuran-1,3-dione and isochroman-1,3-dione under microwave irradiation gave corresponding condensation products 2ae, 3ae and 4ae, respectively, in good yields. All these compounds were screened in vitro for anticancer activity against five human cancer cell lines, i.e., breast (T47D), lung (NCl H-522), colon (HCT-15), ovary (PA-1) and liver (Hep G2). Compounds 1-(3-methoxyacridine-9-yl) pyrrolidine-2,5-dione (2d) (ovary PA-1), 2-(2-methylacridine-9-yl)hexahydro-1H-isoindole-1,3(2H)-dione (3b) (lung NCl H-522), 2-(4-methylacridine-9-yl)hexahydro-1H-isoindole-1,3(2H)-dione (3c) (ovary PA-1), 2-(4-methoxyacridine-9-yl)hexahydro-1H-isoindole-1,3(2H)-dione (3e) (ovary PA-1) and 2-(2-methylacridine-9-yl)isoquinoline-1,3(2H,4H)-dione (4b) (ovary PA-1) exhibited IC50 values 7.1, 8.0, 5.4, 10.0 and 6.56 µM, respectively, and hence possess good anticancer activity.

Keywords

Microwave-assisted synthesis Acridine cyclic imide Human cancer cell lines Anticancer 

Notes

Acknowledgments

We are thankful to technical staff of the Chemistry Department, I. I. T. Roorkee, for spectroscopic studies and elemental analysis. Thanks are also due to Head I.I.C. for providing NMR facility. Mr. Anuj Kumar is thankful to MHRD, New Delhi, for financial assistance.

Supplementary material

44_2015_1380_MOESM1_ESM.docx (4.9 mb)
Supplementary material 1 (DOCX 4997 kb)

References

  1. Abdel-Aziz AA-M, El-Tahir KEH, Asiri YA (2011) Synthesis, anti-inflammatory activity and COX-1/COX-2 inhibition of novel substituted cyclic imides. Part 1: molecular docking study. Eur J Med Chem 46:1648–1655PubMedCrossRefGoogle Scholar
  2. Albert A, Gledhill W (1945) Improved syntheses of aminoacridines. IV. Substituted 9-aminoacridines. J Soc Chem Ind L 64:169–172Google Scholar
  3. Albert A, Ritchie B (1960) 9-aminoacridine. Org Synth Coll 3:53–56Google Scholar
  4. Allen CFH, Mckee GHW (1959) Acridone. Org Synth Coll 2:15–17Google Scholar
  5. Al-Suwaidan IA, Alanazi AM, El-Azab AS, Al-Obaid AM, El-Tahir KEH, Maarouf AR, El-Enin MAA, Abdel-Aziz AA-M (2013) Molecular design, synthesis and biological evaluation of cyclic imides bearing benzenesulfonamide fragment as potential COX-2 inhibitors. Part 2. Bioorg Med Chem Lett 23:2601–2605PubMedCrossRefGoogle Scholar
  6. Arya S, Kumar N, Roy P, Sondhi SM (2013a) Synthesis of amidine and bis amidine derivatives and their evaluation for anti-inflammatory and anticancer activity. Eur J Med Chem 59:7–14PubMedCrossRefGoogle Scholar
  7. Arya S, Kumar S, Rani R, Kumar N, Roy P, Sondhi SM (2013b) Synthesis, anti-inflammatory, and cytotoxicity evaluation of 9,10-dihydroanthracene-9,10-α, β-succinimide and bis-succinimide derivatives. Med Chem Res 22:4278–4285CrossRefGoogle Scholar
  8. Bacherikov VA, Chou T-C, Dong H-J, Zhang X, Chen C-H, Lin Y-W, Tsai T-J, Lee R-Z, Liu LF, Su T-L (2005) Potent antitumor 9-anilinoacridines bearing an alkylating N-mustard residue on the anilino ring: synthesis and biological activity. Bioorg Med Chem 13:3993–4006PubMedCrossRefGoogle Scholar
  9. Byun A, Park JY, Moon KH, Park MS (2008) Synthesis and hypnotic activities of N-Cbz-α-aminoglutarimidooxy carboxylate derivatives. Arch Pharm Res 31:834–837PubMedCrossRefGoogle Scholar
  10. Daghigh LR, Pordel M, Davoodnia A (2014) Synthesis of new fluorescent pyrazolo[4,3-a]acridine derivatives having strong antibacterial activities. J Chem Res 38(4):202–207CrossRefGoogle Scholar
  11. de Oliveira KN, Chiaradia LD, Martins PGA, Mascarello A, Cordeiro MNS, Guido RVC, Andricopulo AD, Yunes RA, Nunes RJ, Vernal J, Terenzi H (2011) Sulfonyl-hydrazones of cyclic imides derivatives as potent inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB). Med Chem Commun 2:500–504CrossRefGoogle Scholar
  12. de Oliveira KN, Souza MM, Sathler PC, Magalhaes UO, Rodrigues CR, Castro HC, Palm PR, Sarda M, Perotto PE, Cezar S, de Brito MA, Ferreira ASSR, Cabral LM, Machado C, Nunes RJ (2012) Sulphonamide and sulphonyl-hydrazone cyclic imide derivatives: antinociceptive activity, molecular modeling and In Silico ADMET screening. Arch Pharm Res 35:1713–1722PubMedCrossRefGoogle Scholar
  13. Desbois N, Gardette M, Papon J, Labarre P, Maisonial A, Auzeloux P, Lartigue C, Bouchon B, Debiton E, Blache Y, Chavignon O, Teulade J-C, Maublant J, Madelmont J-C, Moins N, Chezal J-M (2008) Design, synthesis and preliminary biological evaluation of acridine compounds as potential agents for a combined targeted chemo-radionuclide therapy approach to melanoma. Bioorg Med Chem 16:7671–7690PubMedCrossRefGoogle Scholar
  14. El-Azab AS, Alanazi AM, Abdel-Aziz NI, Al-Suwaidan IA, El-Sayed MAA, El-Sherbeny MA, Abdel-Aziz AA-M (2013) Synthesis, molecular modeling study, preliminary antibacterial, and antitumor evaluation of N-substituted naphthalimides and their structural analogues. Med Chem Res 22:2360–2375CrossRefGoogle Scholar
  15. El-Deiry WS (2008) Acridine compound activation of p53 and use for the treatment of cancer. PCT Int Appl WO 2008010984 A2 20080124. Chem Abstr 148:160110Google Scholar
  16. El-Zahabi MA, Gad LM, Bamanie FH, Al-Marzooki Z (2012) Synthesis of new cyclic imides derivatives with potential hypolipidemic activity. Med Chem Res 21:75–84CrossRefGoogle Scholar
  17. Gardette M, Viallard C, Paillas S, Guerquin-Kern J-L, Papon J, Moins N, Labarre P, Desbois N, Wong-Wah-Chung P, Palle S, Wu T-D, Pouget J-P, Miot-Noirault E, Chezal J-M, Degoul F (2014) Evaluation of two 125I-radiolabeled acridine derivatives for Auger-electron radionuclide therapy of melanoma. Invest New Drugs 32:587–597PubMedCrossRefGoogle Scholar
  18. Goodell JR, Madhok AA, Hiasa H, Ferguson DM (2006) Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg Med Chem 14:5467–5480PubMedCrossRefGoogle Scholar
  19. Guetzoyan L, Yu X-M, Ramiandrasoa F, Pethe S, Rogier C, Pradines B, Cresteil T, Perree-Fauvet M, Mahy J-P (2009) Antimalarial acridines: Synthesis, in vitro activity against P. falciparum and interaction with hematin. Bioorg Med Chem 17:8032–8039PubMedCrossRefGoogle Scholar
  20. Hummersone MG, Cousin D, Frigerio M (2012) Acridine derivatives as telomerase inhibitors and their preparation and use for the treatment of proliferative disorders. PCT Int Appl WO 2012042265 A1 20120405. Chem Abstr 156:477677Google Scholar
  21. Ip NY, Ip FCF, Hu Y, Han Y, Chung SK (2008) Preparation of acridine derivatives as cholinesterase inhibitors. PCT Int Appl WO 2008091901 A1 20080731. Chem Abstr 149:224114Google Scholar
  22. Janovec L, Kozurkova M, Sabolova D, Ungvarsky J, Paulikova H, Plsikova J, Vantova Z, Imrich J (2011) Cytotoxic 3,6-bis((imidazolidinone)imino)acridines: synthesis, DNA binding and molecular modeling. Bioorg Med Chem 19:1790–1801PubMedCrossRefGoogle Scholar
  23. Kumar S, Kumar N, Roy P, Sondhi SM (2013a) Efficient synthesis of piperazine-2,6-dione and 4-(1H-indole-2-carbonyl)piperazine-2,6-dione derivatives and their evaluation for anticancer activity. Med Chem Res 22:4600–4609CrossRefGoogle Scholar
  24. Kumar S, Kumar N, Roy P, Sondhi SM (2013b) Synthesis, anti-inflammatory, and antiproliferative activity evaluation of isoindole, pyrrolopyrazine, benzimidazoisoindole, and benzimidazopyrrolopyrazine derivatives. Mol Divers 17:753–766PubMedCrossRefGoogle Scholar
  25. Kumar S, Kumar N, Roy P, Sondhi SM (2014) Efficient synthesis of heterocyclic compounds derived from 2,6-dioxopiperazine derivatives and their evaluation for anti-inflammatory and anticancer activities. Med Chem Res 23:3953–3969CrossRefGoogle Scholar
  26. Kumari G, Singh RK (2014) Green synthesis, antibacterial activity, and SAR of some novel naphthalimides and allylidenes. Med Chem Res. doi: 10.1007/s00044-014-1118-6 Google Scholar
  27. Lang X, Li L, Chen Y, Sun Q, Wu Q, Liu F, Tan C, Liu H, Gao C, Jiang Y (2013) Novel synthetic acridine derivatives as potent DNA-binding and apoptosis-inducing antitumor agents. Bioorg Med Chem 21:4170–4177PubMedCrossRefGoogle Scholar
  28. Li Q, Fang H, Wang X, Xu W (2010) Novel cyclic-imide peptidomimetics as aminopeptidase N inhibitors. Structure-based design, chemistry and activity evaluation. II. Eur J Med Chem 45:1618–1626PubMedCrossRefGoogle Scholar
  29. Machado KE, de Oliveira KN, Santos-Bubniak L, Licinio MA, Nunes RJ, Santos-Silva MC (2011) Evaluation of apoptotic effect of cyclic imide derivatives on murine B16F10 melanoma cells. Bioorg Med Chem 19:6285–6291PubMedCrossRefGoogle Scholar
  30. Mcevoy GK (ed) (1992) AHFS drug information 484–610Google Scholar
  31. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  32. Prabakaran K, Yamuna E, Prasad KJR (2011) Synthesis and antimicrobial activities of nitro substituted indolo[3,2-c]acridines. Indian J Chem Sect B 50B:906–909Google Scholar
  33. Sedlacek O, Hruby M, Studenovsky M, Vetvicka D, Svoboda J, Kankova D, Kovar J, Ulbrich K (2012) Polymer conjugates of acridine-type anticancer drugs with pH-controlled activation. Bioorg Med Chem 20:4056–4063PubMedCrossRefGoogle Scholar
  34. Sharma G, Park JY, Park MS (2008a) Design and synthesis of 6-amino-1,4-oxazepane-3,5-dione derivatives as novel broad spectrum anticonvulsants. Bioorg Med Chem Lett 18:3188–3191PubMedCrossRefGoogle Scholar
  35. Sharma G, Park JY, Park MS (2008b) Synthesis and anticonvulsant evaluation of 6-amino-1,4-oxazepane-3,5-dione derivatives. Arch Pharm Res 31:838–842PubMedCrossRefGoogle Scholar
  36. Su T-L, Lin Y-W, Chou T-C, Zhang X, Bacherikov VA, Chen C-H, Liu LF, Tsai T-J (2006) Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: synthesis and biological activity. J Med Chem 49:3710–3718PubMedCrossRefGoogle Scholar
  37. Szymanski P, Markowicz M, Bajda M, Malawska B, Mikicuik-Olasik E (2012) Synthesis, biological activity and molecular modeling of 4-fluoro-N-[ω-(1,2,3,4-tetrahydroacridin-9-ylamino)-alkyl]-benzamide derivatives as cholinesterase inhibitors. Arzneim Forsch 62(12):655–660CrossRefGoogle Scholar
  38. Teitelbaum AM, Gallardo JL, Bedi J, Giri R, Benoit AR, Olin MR, Morizio KM, Ohlfest JR, Remmel RP, Ferguson DM (2012) 9-Amino acridine pharmacokinetics, brain distribution, and in vitro/in vivo efficacy against malignant glioma. Cancer Chemother Pharmacol 69:1519–1527PubMedCrossRefGoogle Scholar
  39. Thi HTN, Lee C-Y, Teruya K, Ong W-Y, Doh-ura K, Go M-L (2008) Antiprion activity of functionalized 9-aminoacridines related to quinacrine. Bioorg Med Chem 16:6737–6746CrossRefGoogle Scholar
  40. Tomer V, Bhattacharjee G, Kamaluddin Rajakumar S, Srivastava K, Puri SK (2010) Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur J Med Chem 45:745–751CrossRefGoogle Scholar
  41. Tonelli M, Vettoretti G, Tasso B, Novelli F, Boido V, Sparatore F, Busonera B, Ouhtit A, Farci P, Blois S, Giliberti G, Colla PL (2011) Acridine derivatives as anti-BVDV agents. Antivir Res 91:133–141PubMedCrossRefGoogle Scholar
  42. Villa V, Tonelli M, Thellung S, Corsaro A, Tasso B, Novelli F, Canu C, Pino A, Chiovitti K, Paludi D, Russo C, Sparatore A, Aceto A, Boido V, Sparatore F, Florio T (2011) Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity. Neurotox Res 19:556–574PubMedCrossRefGoogle Scholar
  43. Wang S-S, Lee Y-J, Hsu S-C, Chang H-O, Yin W-K, Chang L-S, Chou S-Y (2007) Linker-modified triamine-linked acridine dimers: synthesis and cytotoxicity properties in vitro and in vivo. Bioorg Med Chem 15:735–748PubMedCrossRefGoogle Scholar
  44. Yesildag B, Ulus R, Basar E, Aslan M, Kaya M, Bulbul M (2014) Facile, highly efficient, and clean one-pot synthesis of acridine sulfonamide derivatives at room temperature and their inhibition of human carbonic anhydrase isoenzymes. Monatsh Chem 145:1027–1034CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anuj Kumar
    • 1
  • Nikhil Kumar
    • 2
  • Partha Roy
    • 2
  • S. M. Sondhi
    • 1
  • Anuj Sharma
    • 1
    Email author
  1. 1.Department of ChemistryIndian Institute of Technology-RoorkeeRoorkeeIndia
  2. 2.Department of BiotechnologyIndian Institute of Technology-RoorkeeRoorkeeIndia

Personalised recommendations