Advertisement

Medicinal Chemistry Research

, Volume 24, Issue 8, pp 3166–3173 | Cite as

Synthesis and evaluation of unsymmetrical heterocyclic thioureas as potent β-glucuronidase inhibitors

  • Muhammad TahaEmail author
  • Nor Hadiani Ismail
  • Waqas Jamil
  • Khalid Mohammed Khan
  • Uzma Salar
  • Syed Muhammad Kashif
  • Fazal Rahim
  • Yawar Latif
Original Research

Abstract

Thiourea analogs 120 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. The compounds 9 (0.86 ± 0.01 μM), 6 (1.24 ± 0.01 μM), 16 (1.64 ± 0.02 μM) and 15 (2.12 ± 0.02 μM) showed potent activity. Other analogs 15, 7, 8, 10, 11, 13, 17, 20 showed better activity than standard drug d-saccharic acid 1,4-lactone (47.34 ± 0.21 μM) ranging 4.36–34.4 μM. All synthetic compounds were characterized by different spectroscopic methods. This study has identified a new class of potent inhibitors β-glucuronidase.

Keywords

Thioureas β-Glucuronidase inhibition Heterocyclic 

Notes

Acknowledgments

Authors would like to acknowledge The Ministry of Agriculture (MOA) Malaysia and Universiti Teknologi MARA under MOA Grant File No. 100-RMI/MOA 16/6/2 (1/2013) and Higher Education Commission (HEC) Pakistan, under National Research Program for Universities (Project No. 20-1910) for the financial support.

References

  1. Ahmad S, Hughes MA, Yeh LA, Scott JE (2012) Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. J Biomol Screen 17:957–965PubMedCrossRefGoogle Scholar
  2. Ala JP, DeLoskey RJ, Huston EE, Jadhav PK, Lam PYS, Eyermann CJ, Hodge CN, Schadt MC, Lewandowski FA, Weber PC, McCabe DD, Duke JL, Chang CH (1998) Molecular recognition of cyclic urea HIV-1 protease inhibitors. J Biol Chem 273:12325–12331PubMedCrossRefGoogle Scholar
  3. Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Meo FD, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P (2013) Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. J Comput Aided Mol Des 27:951–964CrossRefGoogle Scholar
  4. Aziz AN, Taha M, Ismail NH, Anouar EH, Yousuf S, Jamil W, Awang K, Ahmat N, Khan KM, Kashif SM (2014) Synthesis, crystal structure, DFT studies and evaluation of the antioxidant activity of 3,4-Dimethoxybenzenamine schiff bases. Molecules 19:8414–8433PubMedCrossRefGoogle Scholar
  5. Bäckbro K, Löwgren S, Österlund K, Atepo J, Unge T (1997) Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor. J Med Chem 40:898–902PubMedCrossRefGoogle Scholar
  6. Bank N, Bailine SH (1965) Urinary β-glucuronidase activity in patients with urinary-tract infection. N Engl J Med 272:70–75PubMedCrossRefGoogle Scholar
  7. Bloom JD, Dushin RG, Curran KJ, Donahue F, Norton EB, Terefenko E, Jonas TR, Ross AA, Feld B, Lang SA, Grandi D (2004) Bioorgan Med Chem 14:3401–3406CrossRefGoogle Scholar
  8. Boyland E, Gasson JE, Williams DC (1957) Enzyme activity in relation to cancer; the urinary β-glucuronidase activity of patients suffering from malignant disease. Br J Cancer 11:120–129PubMedCentralPubMedCrossRefGoogle Scholar
  9. Caygill JC, Pitkeathly DA (1966) A study of β-acetylglucosaminase and acid phosphatase in pathological joint fluids. Ann Rheum Dis 25:137–144PubMedCentralPubMedGoogle Scholar
  10. Cheng TC, Chuang KH, Roffler SR, Cheng KW, Leu YL, Chuang CH, Huang CC, Kao CH, Hsieh YC, Chang LS, Cheng TL, Chen CS (2015) Discovery of specific inhibitors for intestinal E. coli β-Glucuronidase through in silico virtual screening. Sci World J 2015:740815. doi: 10.1155/2015/740815 CrossRefGoogle Scholar
  11. Chrusciel RA, Strohbach JW (2004) Non-peptidic HIV protease inhibitors. Curr Top Med Chem 4:1097–1114PubMedCrossRefGoogle Scholar
  12. Flieger J, Żelazko AC, Rządkowska M, Szacoń E, Matosiuk D (2012) Usefulness of reversed-phase HPLC enriched with room temperature imidazolium based ionic liquids for lipophilicity determination of the newly synthesized analgesic active urea derivatives. J Pharm Biomed Anal 66:58–67PubMedCrossRefGoogle Scholar
  13. Fortin JS, Lacroix J, Desjardins M (2007) N-Phenyl-N′-(2-chloroethyl)urea analogs of combretastatin A-4: is the N-phenyl-N′-(2-chloroethyl)urea pharmacophore mimicking the trimethoxy phenyl moiety. Bioorgan Med Chem 15:4456–4469CrossRefGoogle Scholar
  14. Fortin S, Wei L, Moreau E, Labrie P, Petitclerc É, Kotra LP, Gaudreault RC (2009) Mechanism of action of N-phenyl-N′-(2-chloroethyl)ureas in the colchicine-binding site at the interface between α- and β-tubulin. Bioorgan Med Chem 17:3690–3697CrossRefGoogle Scholar
  15. Gonick HC, Kramer HJ, Schapiro AE (1973) Urinary β-glucuronidase activity in renal disease. Arch Intern Med 132:63–69PubMedCrossRefGoogle Scholar
  16. Holešová S, Valášková M, Hlaváč D, Madejová J, Samlíková M, Tokarský J, Pazdziora E (2014) Antibacterial kaolinite/urea/chlorhexidine nanocomposites: experiment and molecular modeling. Appl Surf Sci 305:783–791CrossRefGoogle Scholar
  17. Hultén J, Bonham NM, Nillroth U, Hansson T, Zuccarello G, Bouzide A, Åqvist J, Classon B, Danielson HA, Karlén Kvarnstrom I, Samuelsson B, Hallberg A (1997) Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities. J Med Chem 40:885–889PubMedCrossRefGoogle Scholar
  18. Jamil W, Perveen S, Shah SAA, Taha M, Ismail NH, Perveen S, Ambreen N, Khan KM, Choudhary MI (2014) Phenoxyacetohydrazide schiff bases: β-Glucuronidase inhibitors. Molecules 19:8788–8802PubMedCrossRefGoogle Scholar
  19. Kallet HA, Lapco L (1967) Urine β-glucuronidase activity in urinary tract disease. J Urol 97:352–356PubMedGoogle Scholar
  20. Khan KM, Ali M, Taha M, Perveen S, Choudhary MI, Voelter W (2008) An expedient and selective approach towards disulfides using sodium bromate/sodium hydrogen sulfite reagent. Lett Org Chem 5:432–434CrossRefGoogle Scholar
  21. Khan KM, Taha M, Ali M, Perveen S (2009) A mild and alternative approach towards symmetrical disulfides using H3IO5/NaHSO3 combination. Lett Org Chem 6:319–320CrossRefGoogle Scholar
  22. Khan KM, Taha M, Rahim F, Ali M, Jamil W, Perveen S, Choudhary MI (2010) An improved method for the synthesis of disulfides by periodic acid and sodium hydrogen sulfite in water. Lett Org Chem 7:244CrossRefGoogle Scholar
  23. Khan KM, Taha M, Naz F, Khan M, Rahim F, Samreen Perveen S, Choudhary MI (2011) Synthesis and in vitro leishmanicidal activity of disulfide derivatives. Med Chem 7:704–710PubMedCrossRefGoogle Scholar
  24. Khan KM, Taha M, Naz F, Ali S, Perveen S, Choudhary MI (2012) Acylhydrazide schiff bases: DPPH radical and superoxide anion scavengers. Med Chem 8:705–710PubMedCrossRefGoogle Scholar
  25. Khan KM, Naz F, Taha M, Khan A, Perveen S, Choudhary MI, Voelter W (2014a) Synthesis and in vitro urease inhibitory activity of N, N’-disubsituted thioureas. Eur J Med Chem 74:314–323PubMedCrossRefGoogle Scholar
  26. Khan KM, Rahim F, Wadood A, Taha M, Khan M, Naureen S, Ambreen N, Hussain S, Perveen S, Choudhary MI (2014b) Evaluation of bisindole as potent β-Glucuronidase inhibitors: synthesis and in silico based studies. Bioorgan Med Chem Lett 24:1825–1829CrossRefGoogle Scholar
  27. Khan KM, Saad SM, Shaikh NN, Hussain S, Fakhri MI, Perveen S, Taha M, Choudhary MI (2014c) Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones. Bioorgan Med Chem 22:3449–3454CrossRefGoogle Scholar
  28. Khan KM, Ambreen N, Taha M, Halim SA, Zaheer-ul-Haq Naureen S, Rasheed S, Perveen S, Ali S, Choudhary MI (2014d) Structure-based design, synthesis and biological evaluation of β-Glucuronidase inhibitors. J Comput Aided Mol Des 28:577–585PubMedCrossRefGoogle Scholar
  29. Lee J, Kang M, Shin M, Kim JM, Kang SU, Lim JO, Choi HK (2003) N-(3-acyloxy-2-benzylpropyl)-N’-[4-(methylsulfonylamino)benzyl]thiourea analogs: novel potent and high affinity antagonists and partial antagonists of the vanilloid receptor. J Med Chem 46:3116–3126PubMedCrossRefGoogle Scholar
  30. Liu Z, Wang Y, Lin H, Zuo D, Wang L, Zhao Y, Gong P (2014) Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives containing diaryl urea moiety as potent antitumor agents. Eur J Med Chem 85:215–227PubMedCrossRefGoogle Scholar
  31. Musharraf SG, Bibi A, Shahid N, Najam-ul-Haq M, Khan M, Taha M, Mughal UR, Khan KM (2012) Acylhydrazide and isatin schiff bases as alternate UV laser desorption ionization (LDI) matrices for low molecular weight (LMW) peptides analysis. Am J Anal Chem 3:779–789CrossRefGoogle Scholar
  32. Plum CM (1967) β-glucoronidase activity in serum, cerebrospinal fluid and urine in normal subjects and in neurological and mental patients. Enzymol Biol Clin 8:97–112Google Scholar
  33. Rahim F, Ullah K, Ullah H, Wadood A, Taha M, Rehman AU, Uddin I, Ashraf M, Shaukat A, Rehman W, Hussain S, Khan KM (2015) Triazinoindole analogs as potent inhibitors of α-glucosidase: synthesis, biological evaluation and molecular docking studies. Bioorg Chem 58:81–87PubMedCrossRefGoogle Scholar
  34. Reddy BS (1976) Dietary factors and cancer of the large bowel. Semin Oncol 3:351–359PubMedGoogle Scholar
  35. Roberts AP, Frampton J, Karim SM, Beard RW (1967) Estimation of β-glucoronidase activity in urinary-tract infection. N Engl J Med 276:1468–1470PubMedCrossRefGoogle Scholar
  36. Ronald AR, Silverblatt F, Clark H, Cutler RE, Turck M (1971) Failure of urinary β-glucuronidase activity to localize the site of urinary tract infection. Appl Environ Microbiol 21:990–992Google Scholar
  37. Santos LD, Lima LA, Cechinel-Filho V, Corrêa R, Buzzi FC, Nunes RJ (2008) Synthesis of new 1-phenyl-3-{4-[(2E)-3-phenylprop-enoyl]phenyl}-thiourea and urea derivatives with antinociceptive activity. Bioorgan Med Chem 16:8526–8534CrossRefGoogle Scholar
  38. Schapiro A, Paul W, Gonick H (1968) Urinary β-glucuronidase in urologic diseases of the kidneys. J Urol 100:146–157PubMedGoogle Scholar
  39. Seth PP, Ranken R, Robinson DE, Osgood SA, Risen LM, Rodgers EL, Migawa MT, Jefferson EA, Swayze EE (2004) Aryl urea analogs with broad-spectrum antibacterial activity. Bioorgan Med Chem 14:5569–5572CrossRefGoogle Scholar
  40. Sham HL, Zhao C, Marsh KC, Betebenner DA (1996a) Novel azacyclic ureas that are potent inhibitors of HIV-1 protease. J Biochem Biophys Res Commun 225:436–440CrossRefGoogle Scholar
  41. Sham HL, Zhao C, Stewart KD, Betebenner DA, Lin S (1996b) A novel, picomolar inhibitor of human immunodeficiency virus type 1 protease. J Med Chem 39:392–397PubMedCrossRefGoogle Scholar
  42. Sivan SK, Vangala R, Manga V (2013) Molecular docking guided structure based design of symmetrical N, N′-disubstituted urea/thiourea as HIV-1 gp120–CD4 binding inhibitors. Bioorgan Med Chem 21:4591–4599CrossRefGoogle Scholar
  43. Sperker B, Backman JT, Kromer K (1997) The role of β-glucuronidase in drug disposition and drug targeting in humans. Clin Pharm 33:18–31CrossRefGoogle Scholar
  44. Taha M, Ismail NH, Jamil W, Yousuf S, Jaafar FM, Ali MI, Kashif SM, Hussain E (2013) Synthesis, evaluation of antioxidant activity and crystal structure of 2,4-Dimethylbenzoylhydrazones. Molecules 18:10912–10929PubMedCrossRefGoogle Scholar
  45. Taha M, Naz H, Rasheed S, Ismail NH, Rahman AA, Yousuf S, Choudhary MI (2014) Synthesis of 4-Methoxybenzoylhydrazones and evaluation of their antiglycation activity. Molecules 19:1286–1301PubMedCrossRefGoogle Scholar
  46. Taha M, Ismail NH, Lalani S, Fatmi MQ, Atiahab Siddiqui S, Khan KM, Imran S, Choudhary MI (2015a) Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Eur J Med Chem 92:387–400PubMedCrossRefGoogle Scholar
  47. Taha M, Ismail NH, Baharudin MS, Lalani S, Mehboob S, Khan KM, Yousuf S, Siddiqui S, Rahim F, Choudhary MI (2015b) Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their a-glucosidase and urease inhibition potential. Med Chem Res 24:1310–1324CrossRefGoogle Scholar
  48. Venkatachalam TK, Mao C, Uckun FM (2004) Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorgan Med Chem 12:4275–4284CrossRefGoogle Scholar
  49. Watson RJ, Allen DR, Birch HL, Chapman GA, Gayle A, Knight LA, Oliver K, Owen DA, Thomas EJ, Tremayne N, Williams SC (2008) Development of CXCR3 antagonists. Part 3: tropenyl and homotropenyl-piperidine urea derivatives. Bioorgan Med Chem Lett 18:147–151CrossRefGoogle Scholar
  50. Yang W, Liu H, Li M, Wang F, Zhou W, Fan J (2012) Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with cobalt. J Inorg Biochem 116:97–105PubMedCrossRefGoogle Scholar
  51. Zhao C, Sham HL, Sun M, Stoll VS, Stewart KD, Lin S, Mo H (2005) Synthesis and activity of N-acyl azacyclic urea HIV-1 protease inhibitors. Bioorgan Med Chem Lett 15:549–555Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Muhammad Taha
    • 1
    • 2
    Email author
  • Nor Hadiani Ismail
    • 1
    • 2
  • Waqas Jamil
    • 3
  • Khalid Mohammed Khan
    • 4
  • Uzma Salar
    • 4
  • Syed Muhammad Kashif
    • 3
  • Fazal Rahim
    • 5
  • Yawar Latif
    • 6
  1. 1.Atta-ur-Rahman Institute for Natural Product DiscoveryUniversiti Teknologi MARA (UiTM)Bandar Puncak AlamMalaysia
  2. 2.Faculty of Applied ScienceUiTMShah AlamMalaysia
  3. 3.Institute of Advance Research Studies in Chemical SciencesUniversity of SindhJamshoroPakistan
  4. 4.H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
  5. 5.Department of ChemistryHazara UniversityMansehraPakistan
  6. 6.Department of Forensic Medicine and ToxiciologyLiaquat University of Medical and Health SciencesJamshoro, HyderabadPakistan

Personalised recommendations