Advertisement

Medicinal Chemistry Research

, Volume 24, Issue 5, pp 1857–1868 | Cite as

Synthesis, antibacterial evaluation, and SAR study of some novel 3-aryl/heteroaryl-9-methyl-1,2,4-triazolo-[4,3-a]-quinoline derivatives

  • M. Kumar
  • V. KumarEmail author
  • G. K. Gupta
Original Research

Abstract

A series of new quinolin-2-yl moiety linked hydrazones of various aryl/heteroaryl aldehydes has been prepared which on treatment with iodobenzene diacetate in dichloromethane yielded novel triazolo[4,3-a]quinoline derivatives. All the synthesized compounds were characterized on the basis of their FT-IR, 1H, 13C NMR, and mass spectral data. Compounds thus obtained were tested in vitro for their antibacterial activity against three Gram-positive bacterial, namely Enterococcus, Bacillus subtilis, and Staphylococcus aureus, and three Gram-negative bacterial strains, namely Psuedomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae using agar well diffusion method. The percentage similarity of all compounds was also assessed on the basis of physico-chemical and steric parameters as compared to a standard drug, Cefixime using Chem 3D software. Most of the compounds possessed good percentage similarity and exhibited admirable antibacterial activity when compared with the standard drug. Compounds (4a, 4b, 3a, 3c, and 3d) containing pyrazole moiety were found to be most effective against Gram-positive bacteria, S. aureus and B. subtilis.

Keywords

Pyrazole Triazole Quinoline Hypervalent iodine Antibacterial activity 

Notes

Acknowledgments

Authors thank to Maharishi Markandeshwar University, Mullana-Ambala, India for providing necessary research facilities.

Supplementary material

44_2014_1254_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4055 kb)

References

  1. Aggarwal R, Kumar V, Tyagi P, Singh SP (2006) Synthesis and antibacterial activity of new 1-heteroaryl-5-amino-3-H/methyl-4-phenyl-pyrazoles. Bioorg Med Chem 14:1785–1791CrossRefPubMedGoogle Scholar
  2. Aggarwal R, Sumran G, Kumar V, Mittal A (2011) Copper (II) chloride mediated synthesis and DNA photocleav-age activity of 1-aryl/heteroaryl-4-substituted-1,2,4-triazolo[4,3-a]quinoxalines. Eur J Med Chem 46:6083–6088CrossRefPubMedGoogle Scholar
  3. Al-Ayed AS (2011) Synthesis of new substituted chromen[4,3-c]pyrazol-4-ones and their antioxidant activities. Molecule 16:10292–10302CrossRefGoogle Scholar
  4. Ashok M, Holla BS, Poojary B (2007) Convenient one pot synthesis and antimicrobial evaluation of some new mannich bases carrying 4-methylthiobenzyl moiety. Eur J Med Chem 42:1095–1101CrossRefPubMedGoogle Scholar
  5. Aziz MA, Rohma GE, Hassan AA (2009) Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activity. Eur J Med Chem 44:3480–3487CrossRefPubMedGoogle Scholar
  6. Bektas H, Karaali N, Sahin D, Demirbas A, Karaoglu SA, Demirbas N (2010) Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Molecule 15:2427–2438CrossRefGoogle Scholar
  7. Bondock S, Naser T, Ammar YA (2013) Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents. Eur J Med Chem 62:270–279CrossRefPubMedGoogle Scholar
  8. Chandrakanthaa B, Isloor AM, Peethambar SK, Shetty P (2012) T3P mediated synthesis of some new quinoline substituted pyrazole derivatives and its antibacterial studies. Der Pharm Chemica 4:1723–1729Google Scholar
  9. Dubey D, Blowin M, Brideau C (1998) Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530. Bioorg Med Chem Lett 8:1255–1260CrossRefGoogle Scholar
  10. EI-Agrody AM, Abd-Rabboh SM, Al-Ghamadi AM (2013) Synthesis, antitumor activity, and structure–activity relationship of some 4H-pyrano[3,2-h]quinoline and 7H-pyrimido[4′,5′:6,5]pyrano[3,2-h]quinoline derivatives. Med Chem Res 22:1339–1355CrossRefGoogle Scholar
  11. Eswarn S, Adhikari AV, Chowdhury IH, Pal NK (2010) New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. Eur J Med Chem 45:3374–3383CrossRefGoogle Scholar
  12. Gibson MS (1963) Hydrazone-IV1 the bromination of benzylidene 2-pyridylhydrazone. Tetrahedron 19:1587–1589CrossRefGoogle Scholar
  13. Gupta A, Unadkat JD, Mao Q (2007) Interactions of azole antifungal agents with the human breast cancer resistance protein. J Pharm Sci 96:3226–3235CrossRefPubMedGoogle Scholar
  14. Gupta GK, Kumar V, Kumar V (2011) Pyrazoles as potential anti-obesity agents: a review. Res J Chem Environ 15(3):90–103Google Scholar
  15. Hassan GS, El-Messery SM, Al-Omary FAM, El-Subbagh HI (2012) Substituted thiazoles VII. Synthesis and antitumor activity of certain 2-(substituted amino)-4-phenyl-1,3-thiazole analogs. Bioorg Med Chem Lett 22:6318–6323CrossRefPubMedGoogle Scholar
  16. Hauser CR, Reynolds GA (1948) Reactions of β-keto esters with aromatic amines. Syntheses of 2- and 4- hydroxyquinoline derivatives. J Am Chem Soc 70:2402–2404CrossRefGoogle Scholar
  17. Kaur K, Kumar V, Gupta GK, Sharma AK (2014) Isoxazoline containing natural products as anticancer agents: a review. Eur J Med Chem 77:121–133CrossRefPubMedGoogle Scholar
  18. Kumar P (2012) An environmentally benign and solvent-free synthesis of 3-aryl[1,2,4]triazolo[4,3-a]pyridines and 1-aryl-5-methyl[1,2,4]triazolo[4,3-a]quinolines using phenyliodine bis(trifluoroacetate) or iodobenzene diacetate. Chem Heterocycl Comp 47:1237–1243CrossRefGoogle Scholar
  19. Kumar V, Aggarwal R, Tyagi P, Singh SP (2005) Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-4-phenyl-3-trifluoromethylpyrazoles. Eur J Med Chem 40:922–927CrossRefPubMedGoogle Scholar
  20. Kumar R, Nair RR, Dhiman SS, Sharma J, Prakash O (2009) Organoioine (III)-mediated synthesis of 3- aryl/heteroaryl-5,7-dimethyl-1,2,4-triazolo[43-c]pyrimidines as antibacterial agents. Eur J Med Chem 44:2260–2264CrossRefPubMedGoogle Scholar
  21. Kumar V, Kaur K, Gupta GK, Sharma AK (2013a) Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 69:735–753CrossRefPubMedGoogle Scholar
  22. Kumar V, Kaur K, Gupta GK, Gupta AK, Kumar S (2013b) Developments in synthesis of the antiinflammatory drug, Celecoxib: a review. Recent Pat inflamm Allergy Drug Discov 7:124–134CrossRefPubMedGoogle Scholar
  23. Lamani DSl, Reddy KRV, Naik HSB (2010) An efficient synthesis and DNA binding interaction study of some novel heterocyclic fused pyrazole quinolines: a potent antimicrobial agent. Afr J Pure Appl Chem 4:247–255Google Scholar
  24. Lu X, Liu X, Wan B (2012) Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6- dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Eur J Med Chem 49:164–171CrossRefPubMedGoogle Scholar
  25. March LC, Romanchick WA, Bajwa GS, Joullic MM (1973) Antimalarials. 2. Dihydro-l,3-oxazinoquinolines and dihydro-l,3-pyridobenzoxazine. J Med Chem 16:337–342CrossRefPubMedGoogle Scholar
  26. Mariappan G, Saha BP, Sutharson L, Haldar A (2010) Synthesis and bioactivity evaluation of pyrazoline derivatives. Indian J Chem 49B:1671–1674Google Scholar
  27. Mistry BD, Desai KR, Patel JA, Patel NI (2012) Conventional and microwave-assisted synthesis of pyrazole derivatives and screening of their antibacterial and antifungal activities. Indian J Chem 51B:746–751Google Scholar
  28. Mohareb RM, El-Sayed NNE, Abdelaziz MA (2012) Uses of cyanoacetylhydrazine in heterocyclic synthesis: novel synthesis of pyrazole derivatives with anti-tumor activities. Molecule 17:8449–8463CrossRefGoogle Scholar
  29. Nikolova N, Jaworska J (2004) Approaches to measure chemical similarity-a review. QSAR Comb Sci 22:1006–1026CrossRefGoogle Scholar
  30. Parekh NM, Maharia KC (2012) Antituberculosis and antibacterial evaluations of some novel phenyl pyrazolone- substituted 1 h-benzo[g]pyrazolo[3,4-b]quinoline-3-ylamine derivatives. Med Chem Res 21:4168–4172CrossRefGoogle Scholar
  31. Pollak A, Tisler M (1966) Synthesis of pyridazine derivatives-V1 formation of s-triazolo-(4,3-b)- pyridazines and bis-s-triazolo-(4,3-b,3′,4′-f)-pyridazines. Tetrahedron 22:2073–2079CrossRefGoogle Scholar
  32. Potts KT, Battacharya J, Smith LS, Ihrig AM, Girard CA (1972) 1,2,4-Triazoles. XXXII. Syntheses and correlation of proton magnetic resonance spectral characteristics with molecular orbital parameters of derivatives of the s-triazolo[4,3-a]quinoline and 5 s-triazolo[3,4-a]isoquinoline ring systems. J Org Chem 37:4410–4415CrossRefGoogle Scholar
  33. Prakash O, Bhardwaj V, Kumar R, Tyagi P, Aneja KR (2004) Organoiodine (III) mediated synthesis of 3-aryl/heteroaryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines as antibacterial agents. Eur J Med Chem 39:1073–1077CrossRefPubMedGoogle Scholar
  34. Prakash O, Hussain K, Aneja DK, Sharma C, Aneja KR (2011) A facile iodine (III)-mediated synthesis of 3-(3- aryl-1-phenyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridines via oxidation of 2-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-1-(pyridin-2-yl)hydrazines and their antimicrobial evaluations. Org Med Chem Lett 1:1–9CrossRefPubMedCentralPubMedGoogle Scholar
  35. Rajput AP, Rajput SS (2011) A novel method for the synthesis of formyl pyrazoles using vilsmeier–haack reaction. Int J Pharm Pharm Sci 3:346–351Google Scholar
  36. Ravala JP, Shaha AB, Patela NH (2011) Synthesis and anti-tubercular activity of novel pyrazol-5(H)-one derivatives. Eur J Med Chem 2:238–242CrossRefGoogle Scholar
  37. Sadana AK, Mirza Y, Aneja KR, Prakash O (2003) Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a]pyridines and 1-aryl/hetryl-5-methyl-1,2,4-triazolo[4,3-a]quinolines as antibacterial agents. Eur J Med Chem 38:533–536CrossRefPubMedGoogle Scholar
  38. Sadashiva MP, Mallesha H, Hitesh NA, Rangappaa KS (2004) Synthesis and microbial inhibition study of novel 5-imidazolyl substituted isoxazolidines. Bioorg Med Chem 12:63–89CrossRefGoogle Scholar
  39. Sakamoto Y, Ono M (2012) The relative signs of NMR proton-carbon coupling constants in quinolines. J Mol Struct 1013:61–66CrossRefGoogle Scholar
  40. Savini L, Ciasserini L, Goeta A, Pellerano C (2002) Synthesis and anti-tubercular evaluation of 4-quinolylhydraz- ones. Bioorg Med Chem 10:2193–2198CrossRefPubMedGoogle Scholar
  41. Shiradkar M, Kumar GVS, Desai V, Tatikonda S, Akula KC, Shah R (2007) Clubbed triazole: a novel approach to antitubercular drugs. Eur J Med Chem 42:807–816CrossRefPubMedGoogle Scholar
  42. Sigroha S, Narasimhan B, Kumar P (2012) Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones. Med Chem Res 21:3863–3875CrossRefGoogle Scholar
  43. Sztanke K, Tuzimski T, Rzymowska J, Pasternak K, Szerszen MK (2008) Synthesis, determination of the lipophi- licity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur J Med Chem 43:404–419CrossRefPubMedGoogle Scholar
  44. Tiwari S, Chauhan PMS, Bhaduri DP, Fatima N, Chatterjee RK (2000) Synthesis and antifilarial profile of 7- chloro-4(substitutedamino)quinolines: a new class of antifilarial agents. Bioorg Med Chem Lett 10:1409–1412CrossRefGoogle Scholar
  45. Vorvoglis A (1997) Chemical transformation using hypervalent iodine reagents. Tetrahedron 53:1179–1255CrossRefGoogle Scholar
  46. Yu LT, Ho MT, Chang CY, Yang TK (2007) Asymmetric zinc-reformatsky reaction of evans chiral imide with acetophenones and its application to the stereoselective synthesis of triazole antifungal agents. Tetrahedron Asymm 18:949–962CrossRefGoogle Scholar
  47. Zhan CB, Cui X, Hong L, Quan ZS, Piao HR (2008) Synthesis and positive inotropic activity of N-(4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoline-7-yl)-2-(piperazin-1-yl)acetamide derivatives. Bioorg Med Chem Lett 18:4606–4609CrossRefGoogle Scholar
  48. Zhdankin W (2009) Hypervalent iodine (III) reagents in organic synthesis. Arkivoc I:1–62CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryMaharishi Markandeshwar UniversityMullana-AmbalaIndia
  2. 2.Department of Pharmaceutical ChemistryMaharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar UniversityMullana-AmbalaIndia

Personalised recommendations