Medicinal Chemistry Research

, Volume 24, Issue 4, pp 1696–1706 | Cite as

Two- and three-dimensional quantitative structure–permeability relationship of flavonoids in Caco-2 cells using stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and pharmacophore (GALAHAD)-based comparative molecular similarity index analysis (COMSIA)

  • Gerard Bryan Gonzales
  • John Van Camp
  • Moises Zotti
  • Vladimer Kobayashi
  • Charlotte Grootaert
  • Katleen Raes
  • Guy Smagghe
Original Research

Abstract

Limited oral bioavailability has hindered the widespread use of flavonoids as bioactive substances. Several studies have been performed to evaluate the transport characteristics of flavonoids in the intestines using cell models, such as Caco-2 cells, but information regarding the key structural features of flavonoids that influence intestinal uptake is still limited to date. In this study, quantitative structure–permeability relationship (QSPR) models were developed to study the permeability of 36 flavonoids through Caco-2 cells using both 2D and 3D approaches. For the 2D model, stepwise multiple linear regression (SMLR) and partial least squares regression (PLSR) resulted in good internal (RSMLR2 = 0.8, RPLSR2 = 0.93) and external (RSMLR2 = 0.93, RPLSR2 = 0.90) predictability using a set of 409 molecular descriptors. The high cross-validated (leave-one-out) R2 values (Q2) for both 2D models (QSMLR2 = 0.77, QPLSR2 = 0.67) suggest that the models are robust and predictive. A pharmacophore (GALAHAD)-based COMSIA analysis was used to generate the 3D QSPR model, which yielded a predictive and robust model (Rtraining2 = 0.96, Rtest2 = 0.95, Q2 = 0.625) composed of hydrogen bond acceptor and donor fields. According to the contour plots, the locations of hydrogen bond acceptors and donors play a crucial role in determining Caco-2 permeability of flavonoids. The models provide deeper insight into the QSPR of flavonoids on intestinal absorption using Caco-2 cell models and could be useful for the high-throughput screening of flavonoids and/or flavonoid-like drugs with health-promoting activities.

Graphical Abstract

Keywords

Flavonoids Caco-2 cells QSPR Stepwise MLR PLS Pharmacophore COMSIA 

References

  1. Actis-Goretta L, Ottaviani JI, Fraga CG (2005) Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem 54:229–234. doi:10.1021/jf052263o CrossRefGoogle Scholar
  2. Al Shukor N, Van Camp J, Gonzales GB, Staljanssens D, Struijs K, Zotti MJ, Raes K, Smagghe G (2013) Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. J Agric Food Chem 61:11832–11839. doi:10.1021/jf404641v
  3. Balasuriya N, Rupasinghe HPV (2012) Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem 135:2320–2325. doi:10.1016/j.foodchem.2012.07.023 CrossRefPubMedGoogle Scholar
  4. Mevik B, Wehrens R, Liland K (2013) pls: Partial Least Squares and Principal Component regression. R package version 2.4–3. http://mevik.net/work/software/pls.html
  5. Brand W, Shao J, Hoek-van den Hil EF, van Elk KN, Spenkelink B, de Haan LH, Rein MJ, Dionisi F, Williamson G, van Bladeren PJ, Rietjens IM (2010) Stereoselective conjugation transport and bioactivity of s- and R-hesperetin enantiomers in vitro. J Agric Food Chem 58:6119–6125. doi:10.1021/jf1008617
  6. Bravi G, Gancia E, Mascagni P, Pegna M, Todeschini R, Zaliani A (1997) MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: a comparative 3D QSAR study in a series of steroids. J Comput Aided Mol Des 11:79–92CrossRefPubMedGoogle Scholar
  7. Bush B, Nachbar R Jr (1993) Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J Comput-Aided Mol Des 7:587–619. doi:10.1007/BF00124364 CrossRefPubMedGoogle Scholar
  8. Butina D (2004) Performance of Kier-Hall E-state descriptors in quantitative structure activity relationship (QSAR) studies of multifunctional molecules. Molecules 9:1004–1009CrossRefPubMedGoogle Scholar
  9. Chen Y, Li H, Tang W, Zhu C, Jiang Y, Zou J, Yu Q, You Q (2009) 3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment European. J Med Chem 44:2868–2876. doi:10.1016/j.ejmech.2008.12.008
  10. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJC, Morgan MRA, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett 436:71–75. doi:10.1016/S0014-5793(98)01101-6 CrossRefPubMedGoogle Scholar
  11. Egan WJ, Lauri G (2002) Prediction of intestinal permeability. Adv Drug Deliv Rev 54:273–289. doi:10.1016/S0169-409X(02)00004-2 CrossRefPubMedGoogle Scholar
  12. Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877. doi:10.1021/jm000292e CrossRefPubMedGoogle Scholar
  13. Farrell TL, Poquet L, Dew TP, Barber S, Williamson G (2012) Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study. Drug Metab Dispos 40:397–406. doi:10.1124/dmd.111.041665 CrossRefPubMedGoogle Scholar
  14. Fiol M, Adermann S, Neugart S, Rohn S, Mugge C, Schreiner M, Krumbein A, Kroh L (2012) Highly glycosylated and acylated flavonols isolated from kale (Brassica oleracea var. sabellica)—Structure–antioxidant activity relationship. Food Res Int 47:80–89. doi:10.1016/j.foodres.2012.01.014
  15. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. doi:10.1016/S1093-3263(01)00123-1 CrossRefPubMedGoogle Scholar
  16. Gonzales GB, Raes K, Coelus S, Struijs K, Smagghe G, Van Camp J (2014) Ultra(high)-pressure liquid chromatography-electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. J Chromatogr A 1323:39–48. doi:10.1016/j.chroma.2013.10.077 CrossRefPubMedGoogle Scholar
  17. Gramatica P (2006) WHIM descriptors of shape. QSAR Comb Sci 25:327–332. doi:10.1002/qsar.200510159 CrossRefGoogle Scholar
  18. Hall LH, Mohney B, Kier LB (1991) The electrotopological state: structure information at the atomic level for molecular graphs. J Chem Inf Comput Sci 31:76–82. doi:10.1021/ci00001a012 CrossRefGoogle Scholar
  19. Hashimoto K, Shimizu M (1993) Epithelial properties of human intestinal Caco-2 cells cultured in a serum-free medium. Cytotechnology 13:175–184CrossRefPubMedGoogle Scholar
  20. Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, Fisher K, Fossati L, Hovenkamp E, Korjamo T, Masungi C, Maubon N, Mols R, Müllertz A, Mönkkönen J, O'Driscoll C, Oppers-Tiemissen HM, Ragnarsson EG, Rooseboom M, Ungell AL (2008) Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci 35:383–396. doi:10.1016/j.ejps.2008.08.004
  21. Hsu CL, Yen GC (2008) Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol Nutr Food Res 52:53–61. doi:10.1002/mnfr.200700393 CrossRefPubMedGoogle Scholar
  22. Huuskonen JJ, Villa AE, Tetko IV (1999) Prediction of partition coefficient based on atom-type electrotopological state indices. J Pharm Sci 88:229–233. doi:10.1021/js980266s CrossRefPubMedGoogle Scholar
  23. Huuskonen J, Rantanen J, Livingstone D (2000) Prediction of aqueous solubility for a diverse set of organic compounds based on atom-type electrotopological state indices. Eur J Med Chem 35:1081–1088. doi:10.1016/S0223-5234(00)01186-7 CrossRefPubMedGoogle Scholar
  24. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130:1695–1699Google Scholar
  25. Jing P, Zhao S, Ruan S, Sui Z, Chen L, Jiang L, Qian B (2014) Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chem 145:365–371. doi:10.1016/j.foodchem.2013.08.082 CrossRefPubMedGoogle Scholar
  26. Kier L, Hall L (1990) An electrotopological-state index for atoms in molecules. Pharm Res 7:801–807. doi:10.1023/A:1015952613760 CrossRefPubMedGoogle Scholar
  27. Lévèques A, Actis-Goretta L, Rein MJ, Williamson G, Dionisi F, Giuffrida F (2012) UPLC–MS/MS quantification of total hesperetin and hesperetin enantiomers in biological matrices. J Pharm Biomed Anal 57:1–6. doi:10.1016/j.jpba.2011.08.031 CrossRefPubMedGoogle Scholar
  28. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. doi:10.1016/S0169-409X(00)00129-0 CrossRefPubMedGoogle Scholar
  29. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747PubMedGoogle Scholar
  30. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242SPubMedGoogle Scholar
  31. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751PubMedGoogle Scholar
  32. Murota K, Shimizu S, Miyamoto S, Izumi T, Obata A, Kikuchi M, Terao J (2002) Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: comparison of isoflavonoids and flavonoids. J Nutr 132:1956–1961PubMedGoogle Scholar
  33. Németh K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, Williamson G, Swallow DM, Kroon PA (2003) Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 42:29–42. doi:10.1007/s00394-003-0397-3
  34. Ollila F, Halling K, Vuorela P, Vuorela H, Slotte JP (2002) Characterization of flavonoid-biomembrane interactions. Arch Biochem Biophys 399:103–108. doi:10.1006/abbi.2001.2759 CrossRefPubMedGoogle Scholar
  35. Olsen H, Aaby K, Borge GIA (2010) Characterization, quantification, and yearly variation of the naturally occurring polyphenols in a common red variety of curly kale (Brassica oleracea L. convar. acephala var. sabellica cv. ‘Redbor’). J Agric Food Chem 58:11346–11354. doi:10.1021/jf102131g CrossRefPubMedGoogle Scholar
  36. Ottaviani JI, Momma TY, Heiss C, Kwik-Uribe C, Schroeter H, Keen CL (2011) The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic Biol Med 50:237–244. doi:10.1016/j.freeradbiomed.2010.11.005 CrossRefPubMedGoogle Scholar
  37. Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042. doi:10.1021/np9904509 CrossRefPubMedGoogle Scholar
  38. Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602. doi:10.1111/j.1365-2125.2012.04425.x PubMedCentralPubMedGoogle Scholar
  39. Rose K, Hall LH, Kier LB (2002) Modeling blood-brain barrier partitioning using the electrotopological state. J Chem Inf Comput Sci 42:651–666CrossRefPubMedGoogle Scholar
  40. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085SPubMedGoogle Scholar
  41. Shimizu M (2010) Interaction between food substances and the intestinal epithelium. Biosci Biotechnol Biochem 74:232–241CrossRefPubMedGoogle Scholar
  42. Tammela P, Laitinen L, Galkin A, Wennberg T, Heczko R, Vuorela H, Slotte JP, Vuorela P (2004) Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch Biochem Biophys 425:193–199. doi:10.1016/j.abb.2004.03.023
  43. Thilakarathna S, Rupasinghe H (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387CrossRefPubMedCentralPubMedGoogle Scholar
  44. Tian XJ, Yang XW, Yang X, Wang K (2009) Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. Int J Pharm 367:58–64. doi:10.1016/j.ijpharm.2008.09.023 CrossRefPubMedGoogle Scholar
  45. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204CrossRefPubMedGoogle Scholar
  46. Wang Y, Wu Q, Yang X-W, Yang X, Wang K (2011) The membrane transport of flavonoids from Crossostephium chinense across the Caco-2 monolayer. Biopharm Drug Dispos 32:16–24. doi:10.1002/bdd.735 CrossRefPubMedGoogle Scholar
  47. Wen X, Walle T (2006) Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos 34:1786–1792. doi:10.1124/dmd.106.011122 CrossRefPubMedGoogle Scholar
  48. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130. doi:10.1016/S0169-7439(01)00155-1 CrossRefGoogle Scholar
  49. Xie M, Zhang X (2013) MLRMPA: A package for Multilinear Regression Model Population Analysis. R package version 1.0. http://cran.r-project.org/web/packages/MLRMPA/index.html
  50. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. doi:10.1002/jcc.21707 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gerard Bryan Gonzales
    • 1
    • 2
    • 3
  • John Van Camp
    • 1
  • Moises Zotti
    • 3
    • 4
  • Vladimer Kobayashi
    • 5
  • Charlotte Grootaert
    • 1
  • Katleen Raes
    • 2
  • Guy Smagghe
    • 3
  1. 1.Department of Food Safety and Food Quality, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Department of Industrial Biological Science, Faculty of Bioscience EngineeringGhent UniversityKortrijkBelgium
  3. 3.Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  4. 4.Department of Crop Protection, Laboratory of ChemoGenomics and BioinformaticsFederal University of Santa MariaSanta MariaBrazil
  5. 5.Department of Mathematics, Physics and Computer Sciences, College of Science and MathematicsUniversity of the Philippines MindanaoMintal DavaoPhilippines

Personalised recommendations