Advertisement

Medicinal Chemistry Research

, Volume 23, Issue 7, pp 3468–3477 | Cite as

Synthesis, molecular docking study, and evaluation of the antiproliferative action of a new group of propargylthio- and propargylselenoquinolines

  • Krzysztof Marciniec
  • Małgorzata Latocha
  • Stanisław Boryczka
  • Rafał Kurczab
Original Research

Abstract

This study describes the synthesis of a new group of halogenopropargylthio-, dipropargylthio-, and halogenopropargylseleno-quinoline derivatives. The ability of all of the synthesized compounds to inhibit the proliferation of the T-47D, MCF-7, MDA-MB-231, and SNB-19 cell lines was determined with the WST-1 assay. The normal fibroblast cell line (HFF-1) was used as a control. The cytotoxic properties of these new, modified propargylquinoline derivatives were comparable to those of cisplatin. The most active compounds, 4,7-dipropargylthiquinoline (8b) and 7-chloro-4-propargylselenoquinoline (5b), were docked into the binding site of human CYP1A1 and CYP1B1. Our data indicate that these derivatives may present promising chemotherapeutic agents, possibly targeting CYP1s pathway.

Keywords

Propargylthioquinolines Propargylselenoquinolines Dipropargylthioquinolines Anticancer activity Molecular docking 

Notes

Acknowledgments

This research was supported by the Medical University of Silesia, Grant No. KNW-1-032/K/3/0.

References

  1. Bachman GB, Cooper DE (1944) Quinoline derivatives from 2- and 4-chloroquinolines. J Org Chem 09(4):302–309CrossRefGoogle Scholar
  2. Boryczka S, Wietrzyk J, Nasulewicz A, Pełczyńska M, Opolski A (2002) New propargylthioquinolines: synthesis, antiproliferative activity in vitro and structure-activity relationships. Pharmazie 57(11):733–739PubMedGoogle Scholar
  3. Boryczka S, Mól W, Milczarek M, Wietrzyk J, Bębenek E (2011) Synthesis and in vitro antiproliferative activity of novel (4-chloro- and 4-acyloxy-2-butynyl)thioquinolines. Med Chem Res 20(8):1402–1410PubMedCentralCrossRefPubMedGoogle Scholar
  4. Chun YJ, Kim S (2003) Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Med Res Rev 23(6):657–668CrossRefPubMedGoogle Scholar
  5. Clegg LX, Feuer EJ, Midthune DN, Fay MP, Hankey BF (2002) Impact of reporting delay and reporting error on cancer incidence rates and trends. J Natl Cancer Inst 94(20):1537–1545CrossRefPubMedGoogle Scholar
  6. Fullas F, Brown DM, Wani MC, Wall ME, Chagwedera TE, Farnsworth NR, Pezzuto JM, Kinghorn AD (1995) Gummiferol, a cytotoxic polyacetylene from the leaves of Adeniagummifera. J Nat Prod 58(10):1625–1628CrossRefPubMedGoogle Scholar
  7. Gajjar K, Martin-Hirsch PL, Martin FL (2012) CYP1B1 and hormone-induced ancer. Cancer Lett 324:13–30Google Scholar
  8. Gonzalez FJ, Gelboin HV (1994) Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev 26(1–2):165–183CrossRefPubMedGoogle Scholar
  9. Gredicak M, Jeric I (2007) Enediyne compounds: new promises in anticancer therapy. Acta Pharm 57:133–150CrossRefPubMedGoogle Scholar
  10. Grissom JW, Gunawardena GU, Klingberg D, Huang D (1996) The chemistry of enediynes, enyneallenes and related compounds. Tetrahedron 52:6453–6518CrossRefGoogle Scholar
  11. Guengerich FP (1988) Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res 48(11):2946–2954PubMedGoogle Scholar
  12. Hevir N, Šinkovec J, Rižner TL (2011) Disturbed expression of phase I and phase II estrogen-metabolizing enzymes in endometrial cancer: lower levels of CYP1B1 and increased expression of S-COMT. Mol Cell Endocrinol 331:158–167Google Scholar
  13. Kawajiri K, Fujii-Kuriyama Y (1991) P450 and human cancer. Jpn J Cancer Res 82(12):1325–1335CrossRefPubMedGoogle Scholar
  14. Kivistö KT, Kroemer HK, Eichelbaum M (1995) The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol 40(6):523–530PubMedCentralCrossRefPubMedGoogle Scholar
  15. Lo YH, LinIL LinCF, Hsu CC, Yang SH, Lin SR, Wu MJ (2007) Novel acyclic enediynes inhibit Cyclin A and Cdc25C expression and induce apoptosis phenomenon to show potent antitumor proliferation. Bioorg Med Chem 15:4528–5436CrossRefPubMedGoogle Scholar
  16. Marciniec K, Maślankiewicz A (2010) From 2,3-, 2,6-, 3,4- and 4,6-dichloroquinolines to isomeric chloroquinolinesulfonyl chlorides. Heterocycles 81:305–316CrossRefGoogle Scholar
  17. Maślankiewicz A, Marciniec K (2009) Synthesis of 4- and 7-quinolinesulfonamides from 4,7-dichloroquinoline. Heterocycles 78(1):93–101CrossRefGoogle Scholar
  18. Mikstacka R, Agnes M, Rimando AM, Dutkiewicz Z, Stefański T, Sobiak S (2012) Design, synthesis and evaluation of the inhibitory selectivity of novel trans-resveratrol analogues on human recombinant CYP1A1, CYP1A2 and CYP1B. Bioorg Med Chem 20:5117–5126CrossRefPubMedGoogle Scholar
  19. Mól W, Matyja M, Filip B, Wietrzyk J, Boryczka S (2008) Synthesis and antiproliferative activity in vitro of novel (2-butynyl)thioquinolines. Bioorg Med Chem 16:8136–8141CrossRefPubMedGoogle Scholar
  20. Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD, Melvin WT (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57(14):3026–3031PubMedGoogle Scholar
  21. Nicolaou K, Dai W-M (1991) Chemistry and biology of the enediyne anticancer antibiotics. Angew Chem Int Ed Engl 30:1387–1416CrossRefGoogle Scholar
  22. Pohjanvirta R, Tuomisto J (1994) Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models. Pharmacol Rev 46(4):483–549PubMedGoogle Scholar
  23. Rawat DS, Benites PJ, Incarvito CD, Rheingold AL, Zaleski JM (2001) The contribution of ligand flexibility to metal center geometry modulated thermal cyclization of conjugated pyridine and quinolinemetalloenediynes of copper(I) and copper(II). Inorg Chem 40:1846–1857CrossRefPubMedGoogle Scholar
  24. Saeki K, Matsuda T, Kato TA, Yamada K, Mizutani T, Matsui S, Fukuhara K, Miyata N (2003) Activation of the human Ah receptor by aza-polycyclic aromatic hydrocarbons and their halogenated derivatives. Biol Pharm Bull 26(4):448–452CrossRefPubMedGoogle Scholar
  25. Sheng-Nan L, Yu-Ping C, Keng-Chang T, Chia-Yu C, Tian-Shung W, Yune-Fang U (2013) Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: selectivity, kinetic characterization, and molecular modeling. Toxicol Appl Pharm 272:671–680CrossRefGoogle Scholar
  26. Shimada T, Yamazaki H, Foroozesh M, Hopkins NE, Alworth WL, Guengerich FP (1998) Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, 1A2, and 1B1. Chem Res Toxicol 11(9):1048–1056CrossRefPubMedGoogle Scholar
  27. Shimada T, Tanaka NK, Takenaka S, Imai Y, Hopkins NE, Foroozesh MK, Alworth WL, Yamazaki H, Guengerich FP, Komori M (2008) Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 1B1 in inhibiting catalytic activity. Chem Res Toxicol 21(12):2313–2323PubMedCentralCrossRefPubMedGoogle Scholar
  28. Silva IS (1999) Cancer epidemiology: principles and methods. International Agency for Research on Cancer (IARC), LyonGoogle Scholar
  29. Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, Seeger JM, Weiss J, Fischer F, Frommolt P, Michel K, Peifer M, Mermel C, Girard L, Peyton M, Gazdar AF, Minna JD, Garraway LA, Kashkar H, Pao W, Meyerson M, Thomas RK (2009) PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res 69(8):3256–3261PubMedCentralCrossRefPubMedGoogle Scholar
  30. Takahashi A, Endo T, Nozoe S (1992) Repandiol, a new cytotoxic diepoxide from the mushrooms Hydnum repandum and H. repandum var. album. Chem Pharm Bull (Tokyo) 40(12):3181–3184CrossRefGoogle Scholar
  31. Walsh AA, Szklarz GD, Scott EE (2013) Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J Biol Chem 288(18):12932–12943PubMedCentralCrossRefPubMedGoogle Scholar
  32. Wang A, Savas U, Stout CD, Johnson EF (2011) Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. J Biol Chem 286(7):5736–5743PubMedCentralCrossRefPubMedGoogle Scholar
  33. Wu MJ, Lin CF, Chen HT, Duh TH, Wang SS, Hsu SC (1996) Molecular design, chemical synthesis and biological studies of novel enediynes related to dynemicin A. Bioorg Med Chem Lett 6:2183–2186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Krzysztof Marciniec
    • 1
  • Małgorzata Latocha
    • 2
  • Stanisław Boryczka
    • 1
  • Rafał Kurczab
    • 3
  1. 1.Department of Organic ChemistryThe Medical University of SilesiaSosnowiecPoland
  2. 2.Department of Cell BiologyThe Medical University of SilesiaSosnowiecPoland
  3. 3.Institute of PharmacologyPolish Academy of SciencesKrakówPoland

Personalised recommendations