Advertisement

Medicinal Chemistry Research

, Volume 23, Issue 5, pp 2667–2675 | Cite as

Synthesis of novel bioactive pyrazolothiazoles

  • S. Yuvaraj
  • Monica Mendon
  • Asha Almeida
  • Mini Dhiman
  • Manju GirishEmail author
Original Research

Abstract

The synthesis of 3-{substituted 1,3-thiazol-5-yl}-1-substituted 1H-pyrazole-4-carboxylates (4an) has been achieved in facile manner by the reaction between 2-aminothiazoles, dimethylformamide dimethyl acetal and hydrazine. All the synthesized compounds were characterized by spectral and elemental analyses. These compounds were also evaluated against anti-inflammatory activity and showing promising activities.

Keywords

Thiazoles Pyrazoles Pyrazolothiazoles Anti-inflammation 

References

  1. Ali MA, Siddiqui AA, Shaharayar M (2007) Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivaties. Eur J Med Chem 42:268–275CrossRefPubMedGoogle Scholar
  2. Amine MAK, Abdel Rahman DE, El-Eryani YA (2008) Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents. Bioorg Med Chem 16:5377–5388CrossRefGoogle Scholar
  3. Amir M, Kumar H, Khan SA (2008) Synthesis and pharmacological evaluation of pyrazoline derivaties as new anti-inflammatory and analgesis agents. Biorg Med Chem Lett 18:918–922CrossRefGoogle Scholar
  4. Andreani A, Rambaldi M, Leoni A, Locatelli A, Bossa R, Chiericozzi M, Galatulas I, Salvatore G (1996) Synthesis and cardiotonic activity of imidazo[2,1-b]thiazoles bearing a lactum ring. Eur J Med Chem 31:383–387CrossRefGoogle Scholar
  5. Basavaraja KM, Somasekhar B, Appalaraju S (2008) Synthesis and biological activity of some 2-[3-substituted-2-thione-1,3,4-thiazole-5-yl]aminobenzothiazoles. Indian J Heterocycl Chem 18:69–72Google Scholar
  6. Bhusari KIP, Khedekar PB, Umathe SN, Bahekar RH, Raghu RRA (2000) Synthesis of 8-bromo-9-substituted-1,3-benzothizolo[5,1-b]1,3,4-triazoles and their anthelmintic activity. Indian J Heterocycl Chem 9:275–278Google Scholar
  7. Bilgin AA, Palaska E, Sunal R (1993) Studies on the synthesis and antidepressant activity of some-1-thiocarbamoyl-3,5-diphenyl-2-pyrazolines. Arzneimittelforschung 43:1041–1044PubMedGoogle Scholar
  8. Chowki D, Magdum CS, Ladda PL, Mohite SK (2008) Synthesis and antitubercular activity of 6-nitro-2-[4-formyl-3-(substituted phenyl)pyrazol-1-yl-benzothiazoles. Int J Chem Sci 6:1600–1605Google Scholar
  9. Dekhtyar M (2007) Approximation of basicity and absorption region in large arrays of polymethine dyes with dye pigment. Dye Pigm 74:744CrossRefGoogle Scholar
  10. Dmytro H, Borys Z, Olexandr V, Lucjusz Z, Andrzej G, Roman L (2009) Synthesis of novel thiazolone-based compound containing pyrazoline moiety and evaluation of their anticancer activity. Eur J Med Chem 44:1396–1404CrossRefGoogle Scholar
  11. El Ali ST, Kazak AM (2010) Synthesis and antimicrobial activity of some new 1,3-thiazoles, 1,3,4-thiadiazoles, 1,24-triazoles and 1,3-thiazines incorporating acridine and 1,2,3,4-tetrahydroacridine moieties. Eur J Chem 1:6–11CrossRefGoogle Scholar
  12. Fevig JM (2011) Synthesis and SAR of benzamidine factor Xa inhibitors containing a vicinally-substituted heterocyclic core. Bioorg Med Chem Lett 11:641–645CrossRefGoogle Scholar
  13. Hamada NMM, Sharshira EM (2011) Synthesis and antimicrobial evaluation of some heterocyclic chalcone derivatives. Molecules 16:2304–2312CrossRefPubMedGoogle Scholar
  14. Harrison LM, vander Hoogen C, van Haaften WCE, Tesh VL (2005) Chemokine expression in the monocytic cell line THP-1 in response to purified shiga toxin 1 and/or lipopolysaccharides. Infect Immun 73:403–412PubMedCentralCrossRefPubMedGoogle Scholar
  15. Jiang B, Gu XH (2000) Syntheses and cytotoxicity evaluation of bis (indolyl) thiazole, bis (indolyl) pyrazinone and bis (indolyl) pyrazine: analogues of cytxic marine bis (indole) alkaloid. Bioorg Med Chem 8:363–371CrossRefPubMedGoogle Scholar
  16. Kalirajan R, Sivakumar SU, Jubie S, Gowramma B, Suresh (2009) Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int J Chem Tech Res 1:27–34Google Scholar
  17. Karabasanagouda T, Adhikari AV, Ramgopal D, Parameshwarappa G (2008) Synthesis of some new 2-(4-alkylthiophenoxy)-4-substituted-1,3-thiazoles as possible anti-inflammatory and antimicrobial agents. Ind J Chem 47B:144–152Google Scholar
  18. Karegoudar P, Karthikeyan MS, Prasad DJ, Mahalinga M, Holla BS, Kumar NS (2008) Synthesis of some novel 2,4-disubstituted thiazoles as possible antimicrobial agents. Eur J Med Chem 43:261–267CrossRefPubMedGoogle Scholar
  19. Maggio B, Daidone G, Raffaa D, Plescia S, Mantione L, Cutuli VMC, Mangano NG, Caruso A (2001) Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates. Eur J Med Chem 36:737–742CrossRefPubMedGoogle Scholar
  20. Mahajan NS, Pattana SR, Jadhav RL, Pimpodhar NV, Manikrao AM (2008) Synthesis of some thiazole compounds of biological interest containing mercapta group. Indian J Chem Sci 800–806Google Scholar
  21. Manju SL, Chithralekha Devi SK, Rajasekharan KN (2009) J Heterocyclic Chem 46:455CrossRefGoogle Scholar
  22. Mui MS, Siew BN, Buss AD, Crasta SC, Kah LG, Sue KL (2002) Synthesis of N-1 acidic functionality affording analogues with enhanced antiviral activity against HIV. Biorg Med Chem Lett 12:679–699Google Scholar
  23. Murawewa, DANKAS (1959) Doklady Akademii Nauk SSSR126:1274Google Scholar
  24. Nakamura T, Hioki T, Ohzeki K, Hanaki N US Patent Appl. US 20020058216, 2002; Chem Abstr 2002,136, 393179Google Scholar
  25. Nassar E (2010) Synthesis (in vitro) antitumer and antimicrobial activity of some pyrazoline, pyridine and pyrimidine derivatives linked to indole moiety. J Am Sci 6:463–471Google Scholar
  26. Palaska E, Erol D, Demirdamar R (1996) Synthesis and antidepressant activities of some 1,3,5-triphenyl-2-pyrazolines. Eur J Med Chem 31:43–47CrossRefGoogle Scholar
  27. Palaska E, Aytemir M, Uzbay IT, Erol D (2001) Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur J Med Chem 36:539–543CrossRefPubMedGoogle Scholar
  28. Parmar SS, Pandey BR, Dwivedi C, Harbison RD (1974) Anticonvulsant activity and monoamine oxidase inhibitory properties of 1,3,5-trisubstituted pyrazolines. J Pharm Sci 63:1152–1155CrossRefPubMedGoogle Scholar
  29. Propsavin M, Torovic L, Spaic S, Stankov S, Kapor A, Tomic Z, Popsavin V (2002) Tetrahedron 58:569–580CrossRefGoogle Scholar
  30. Ragavan RV, Vijayakumar V, Kumari NS (2010) Synthesis and antimicrobial activities of novel 1,5-diarylpyrazoles. Eur J Med Chem 45:1173–1180CrossRefPubMedGoogle Scholar
  31. Sharsira EM, Hamada NMM (2011) Synthesis and in vitro antimicrobial activity of some pyrazolyl-1-carboxamide derivatives. Molecules 16:7736–7745CrossRefGoogle Scholar
  32. Siddiqui AA, Rahman MA, Shaharyar M, Mishral V (2010) Synthesis and anticonvulsant activity of some 3,5-diphenyl-2-pyrazoline-1-carboxamide derivaties. Chem Sci J 8:1–10Google Scholar
  33. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807CrossRefPubMedGoogle Scholar
  34. Tverdokhlebov AV (2007) For a review of pyrrolo[2,1-b] thiazoles. Heterocycles 71:761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Yuvaraj
    • 1
  • Monica Mendon
    • 2
  • Asha Almeida
    • 2
  • Mini Dhiman
    • 3
  • Manju Girish
    • 1
    Email author
  1. 1.Organic Chemistry DivisionVellore Institute of TechnologyVelloreIndia
  2. 2.Department of PharmocologyPiramal Enterprises LtdMumbaiIndia
  3. 3.Department of NP Bioactivity Lab DBT ProjectsPiramal EnterprisesMumbaiIndia

Personalised recommendations