Skip to main content
Log in

Modification of carboxylated multiwall nanotubes with benzotriazole derivatives and study of their anticancer activities

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In vitro and in vivo results indicate that functionalized carbon nanotubes are promising for the development of unique anticancer drugs. Since therapeutic and pharmacologic agents could functionalize the structure of carbon nanotubes, we report for the first time three-component condensation reactions consisting of multiwalled carbon nanotube–COCl (MWNTCOCl), diazonium sulfonated salt and phenol derivatives to produce novel anticancer agents. The functionalized carboxylated multiwall nanotubes were then characterized by FT-IR, Raman, SEM, TEM, and solubility test. The functionalized MWNTs exhibited good aqueous solubility. Furthermore, the cytotoxic activity of the MWNT–COOH (A) as well as its functionalized carboxylated multiwall nanotubes (MWNT-CO-2-(1-hydroxynaphthalen-2-yl)-2H-benzo[d][1,2,3]triazole-5-sulfonic acid (B), MWNT-CO-2-(2-hydroxy-1-nitrosonaphthalen-3-yl)-2H-benzo[d][1,2,3]triazole-5-sulfonic acid (C) and MWNT-CO-2-(2-hydroxy-5-nitrophenyl)-2H-benzo[d][1,2,3]triazole-5-sulfonic acid (D)) was tested against human gastric cancer MKN45 and human Colon cancer SW742. In vitro cytotoxicity studies represented a significant enhancement in the cytotoxic capability of f-MWNTs, suggesting these drugs improve drug antitumor activity. Therefore, the highly versatile functionalized carboxylated multiwall nanotubes could potentially be considered as anticancer candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Azizian J, Tahermansouri H, Biazar E, Heidari S, Chobfrosh Khoei D (2010) Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations. Int J Nanomedicine 5:907–914

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bachtold A, Fuhrer MS, Plyasunov S (2000) Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett 84:6082–6608

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary M, Pareek D, Ojha KG, Pareek A (2010) Synthesis and antibacterial activity of 1-(2-Diazo- 6-ethoxybenzothiazolyl) substituted benzene derivatives. Int J Curr Chem 1:175–179

    CAS  Google Scholar 

  • Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon. Nanotubes Sci 282:95–98

    CAS  Google Scholar 

  • Czerw R, Guo Z, Ajayan PM, Sun YP, Carroll DL (2001) Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett 1:423–427

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep-Rev Sect Phys Lett 409:47–99

    Google Scholar 

  • Fu K, Huang W, Lin Y, Riddle LA, Carroll DL, Sun YP (2001) Defunctionalization of functionalized carbon nanotubes. Nano Lett 1:439–441

    Article  CAS  Google Scholar 

  • Gannon GI (2007) Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–2655

    Article  CAS  PubMed  Google Scholar 

  • Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, Pitot HC, Alberts SR (2004) A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 22:23–30

    Article  CAS  PubMed  Google Scholar 

  • Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840

    Article  CAS  Google Scholar 

  • Handratta VD, Vasaitis TS, Njar VCO, Gediyal K, Kataria R, Chopra P, Newman D, Farquhar R, Guo Z, Qiu Y, Brodie AMH (2005) Novel C-17-Heteroaryl Steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft mode. J Med Chem 48:2972–2984

    Article  CAS  PubMed  Google Scholar 

  • Hu CY, Xu YJ, Duo SW, Zhang RF, Li MS (2009) One-step electrodeposited carbon nanotube/zirconia/myoglobin film. J Chin Chem Soc 56:234–238

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (2004) Determination of nanotubes properties by Raman spectroscopy. Phys Eng Sci 362:2311–2336

    Article  CAS  Google Scholar 

  • Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and nearinfrared agents for selective cancer cell destruction. J Am Chem Soc 127:12492–12493

    Article  CAS  PubMed  Google Scholar 

  • Kostarelos K, Lacerda L, Partidos CD, Prato M, Bianco A (2005) Carbon nanotube-mediated delivery of peptides and genes to cells: translating nanobiotechnology to therapeutics. J Drug Del Sci Tech 15:41–47

    Article  CAS  Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) The supramolecular chemistry of organic-inorganic hybrid materials. ACS Nano 1:50–56

    Article  PubMed  Google Scholar 

  • McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotech 1:78–185

    Article  Google Scholar 

  • Moldeus T, Hogberg J, Orrhenius S, Fleischer S, Packer L (1978) Isolation and use of liver cells. Meth Enzymol 52:60–71

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63

    Article  CAS  Google Scholar 

  • Najafi E, Kim J, Han S (2006) UV-ozone treatment of multi-walled carbon nanotube for enhanced organic solvent dispersion. J Coll Surf 284(A):373–378

    Article  Google Scholar 

  • Ohno M, Abe T (1991) Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Meth 145:199–203

    Article  CAS  Google Scholar 

  • Pandey VK, Negi HS (2003) Synthesis and biological activity of some new benzophenothiazines. Indian J Chem (B) 42:206–210

    Google Scholar 

  • Riggs JE, Walker DB, Carroll DL, Sun YP (2000) Optical limiting properties of suspended and solubilized carbon nanotubes. J Phys Chem 104:7071–7076

    Article  CAS  Google Scholar 

  • Safari M, Yuosefi M, Jenkins HA, Bikhof Torbati M, Amanzadeh A (2013) Synthesis, spectroscopic characterization, X-ray structure and in vitro antitumor activities of new triorganotin(IV) complexes with sulphur donor ligand. Med Chem Res. doi:10.1007/s00044-013-0549-9

  • Srinivas KVNS, Das B (2004) Iodine catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones: a simple and efficient procedure for the Biginelli reaction. Synthesis 13:2091–2093

    Google Scholar 

  • Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096

    Article  CAS  PubMed  Google Scholar 

  • Swarnkar PK, Kriplani P, Gupta GN, Jha KGO (2007) Synthesis and antibacterial activity of some new phenothiazine derivatives. E J Chem 4:14–20

    Article  CAS  Google Scholar 

  • Szymczyk A, Roslaniec Z, Zenker M, García-Gutiérrez MC, Hernández JJ, Rueda DR, Nogales A, Ezquerra TA (2011) Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly (trimethylene terephthalate). eXPRESS. Polymer Lett 5:955–995

    Google Scholar 

  • Wu CY, King KY, Kuo CJ, Fang JM, Wu YT, Ho MY, Liao CL, Shie JJ, Liang PH, Wong CH (2006) Stable benzotriazole esters as mechanism-based in activators of the severe acute respiratory syndrome 3CL protease. Chem Biol 13:261–268

    Article  CAS  PubMed  Google Scholar 

  • Xiao XY, Hao M, Yang XY, Ba Q, Li M, Ni SJ, Wang LS, Du X (2011) Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett 302:62–75

    Article  Google Scholar 

  • Zaragoza-Contreras EA, Lozano-Rodrıguez ED, Roman-Aguirre M, Antunez-Flores W, Hernandez-Escobar CA, Sergio G, Aguilar-Elguezabal A (2009) Evidence of multi-walled carbon nanotube fragmentation induced by sonication during nanotube encapsulation via bulk-suspension polymerization. Micron 40:621–627

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yang X, Zhang Y (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled nanotubes suppresses tumor growth. Clin Cancer Res 12:4933–4939

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors like to express their profound gratitude to the Islamic Azad University, Pharmaceutical Sciences Branch, Iran for providing necessary research facilities and financial assistance. The authors also gratefully acknowledge the valuable help of Dr. Hilary Jenkins, research scientist at McMaster University, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Entezari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entezari, M., Safari, M., Hekmati, M. et al. Modification of carboxylated multiwall nanotubes with benzotriazole derivatives and study of their anticancer activities. Med Chem Res 23, 487–495 (2014). https://doi.org/10.1007/s00044-013-0668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0668-3

Keywords

Navigation