Medicinal Chemistry Research

, Volume 22, Issue 9, pp 4069–4074 | Cite as

Benzothiazole Schiff-bases as potential imaging agents for β-amyloid plaques in Alzheimer’s disease

  • Changsheng Gan
  • Lin Zhou
  • Zhenzhen Zhao
  • Haoshu Wang
Original Research

Abstract

A series of benzothiazole Schiff-bases as potential diagnostic imaging agents targeting β-amyloid (Aβ) plaques in Alzheimer’s disease (AD) were synthesized and evaluated. When in vitro binding studies using AD homogenate with [125I] 6-iodo-2-(4′-dimethyl- amino)-phenyl-imidazo[1,2-α]pyridine ([125I]IMPY) as the reference ligand were carried out with the derivatives, the compounds showed high to low binding affinities for AD homogenate at the K i values ranged from 4.38 to 514.65 nM, depending on the substitution on the phenyl ring. Fluorescent staining in vitro showed that one compound with a N,N-dimethylamino group intensely stained Aβ plaques within brain sections of postmortem AD patients. The results strongly suggest that these derivatives are worthy of further study and may be a useful amyloid imaging agents for early detection of amyloid plaques in the brain of AD.

Graphical Abstract

Keywords

Alzheimer’s disease Amyloid plaques Benzothiazole Schiff-bases Binding affinity 

Notes

Acknowledgments

We are grateful to the Key Laboratory of Brain Function and Disease, Chinese Academy of Sciences for financial support.

References

  1. Barrio JR, Kepe V, Satyamurthy N, Huang SC, Small G (2008) Amyloid and tau imaging, neuronal losses and function in mild cognitive impairment. J Nutr Health Aging 12:61S–65SPubMedCrossRefGoogle Scholar
  2. Cai L, Innis RB, Pike VW (2007) Radioligand development for PET imaging of beta-amyloid (Abeta)—current status. Curr Med Chem 14:19–52PubMedCrossRefGoogle Scholar
  3. Carter DB, Chou KC (1998) A model for structure-dependent binding of Congo red to Alzheimer beta-amyloid fibrils. Neurobiol Aging 19:37–40PubMedCrossRefGoogle Scholar
  4. Chandra R, Kung MP, Kung HF (2006) Design, synthesis, and structure-activity relationship of novel thiophene derivatives for beta-amyloid plaque imaging. Bioorg Med Chem Lett 16:1350–1352PubMedCrossRefGoogle Scholar
  5. Duan XH, Liu BL (2008) Aβ-binding molecules: possible application as imaging probes and as anti-aggregation agents. Sci China B 51:801–807CrossRefGoogle Scholar
  6. Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736PubMedCrossRefGoogle Scholar
  7. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid β-peptide (Aβ) aggregation using the Congo red-Aβ (CR-Aβ) spectrophotometric assay. Anal Biochem 266:66–76PubMedCrossRefGoogle Scholar
  8. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319PubMedCrossRefGoogle Scholar
  9. Kudo Y, Okamura N, Furumoto S, Tashiro M, Furukawa K, Maruyama M, Itoh M, Iwata R, Yanai K, Arai H (2007) 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med 48:553–561PubMedCrossRefGoogle Scholar
  10. Kung HF, Lee CW, Zhuang ZP, Kung MP, Hou C, Plössl K (2001) Novel stilbenes as probes for amyloid plaques. J Am Chem Soc 123:12740–12741PubMedCrossRefGoogle Scholar
  11. Lee CW, Zhuang ZP, Kung MP, Plössl K, Skovronsky D, Gur T, Hou C, Trojanowski JQ, Lee VM, Kung HF (2001) Isomerization of (Z, Z) to (E, E)1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)- styrylbenzene in strong base: probes for amyloid plaques in the brain. J Med Chem 44:2270–2275PubMedCrossRefGoogle Scholar
  12. Lin KJ, Hsu WC, Hsiao IT, Wey SP, Jin LW, Skovronsky D, Wai YY, Chang HP, Lo CW, Yao CH, Yen TC, Kung MP (2010) Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent—a pilot study. Nucl Med Biol 37:497–508PubMedCrossRefGoogle Scholar
  13. Manook A, Yousefi BH, Willuweit A, Platzer S, Reder S et al (2012) Small-animal PET imaging of amyloid-beta plaques with [11C]PiB and its multi-modal validation in an APP/PS1 mouse model of Alzheimer’s disease. PLoS ONE 7(3):e31310. doi: 10.1371/journal.pone.0031310 PubMedCrossRefGoogle Scholar
  14. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754PubMedCrossRefGoogle Scholar
  15. Mathis CA, Wang Y, Klunk WE (2004) Imaging beta-amyloid plaques and neurofibrillary tangles in the aging human brain. Curr Pharm Des 10:1469–1492PubMedCrossRefGoogle Scholar
  16. Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulck M, Koole M, Bormans G, Brooks DJ, Vandenberghe R (2009) Phase 1 study of the Pittsburgh Compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med 50:1251–1259PubMedCrossRefGoogle Scholar
  17. Nesterov EE, Skoch J, Hyman BT, Klunk WE, Bacskai BJ, Swager TM (2005) In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew Chem Int Ed Engl 44:5452–5456PubMedCrossRefGoogle Scholar
  18. Nestor PJ, Scheltens P, Hodges JR (2004) Advances in the early detection of Alzheimer’s disease. Nat Med 10:S34–S41PubMedCrossRefGoogle Scholar
  19. Neumaier B, Deisenhofer S, Sommer C, Solbach C, Reske SN, Mottaghy F (2010) Synthesis and evaluation of 18F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer’s disease. Appl Radiat Isot 68(6):1066–1072PubMedCrossRefGoogle Scholar
  20. Newberg AB, Wintering NA, Plössl K, Hochold J, Stabin MG, Watson M, Skovronsky D, Clark CM, Kung MP, Kung HF (2006) Safety, biodistribution, and dosimetry of 123I-IMPY: a novel amyloid plaque-imaging agent for the diagnosis of Alzheimer’s disease. J Nucl Med 47:748–754PubMedGoogle Scholar
  21. Nordberg A (2004) PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 3:519–527PubMedCrossRefGoogle Scholar
  22. Nordberg A (2009) The future: new methods of imaging exploration in Alzheimer’s disease. Front Neurol Neurosci 24:47–53PubMedCrossRefGoogle Scholar
  23. Ono M, Wilson A, Nobrega J, Westaway D, Verhoeff P, Zhuang ZP, Kung MP, Kung HF (2003) 11C-labeled stilbene derivatives as Abeta-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl Med Biol 30:565–571PubMedCrossRefGoogle Scholar
  24. Petersen RC, Parisi JE, Dickson DW, Johnson KA, Knopman DS, Boeve BF, Jicha GA, Ivnik RJ, Smith GE, Tangalos EG, Braak H, Kokmen E (2006) Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63:665–672PubMedCrossRefGoogle Scholar
  25. Querfurth HW, LaFerla FM (2010) Mechanisms of disease: Alzheimer’s disease. N Engl J Med 362:329–344PubMedCrossRefGoogle Scholar
  26. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, Tochon-Danguy H, Chan G, Berlangieri SU, Jones G, Dickinson-Rowe KL, Kung HP, Zhang W, Kung MP, Skovronsky D, Dyrks T, Holl G, Krause S, Friebe M, Lehman L, Lindemann S, Dinkelborg LM, Masters CL, Villemagne VL (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135PubMedCrossRefGoogle Scholar
  27. Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638PubMedCrossRefGoogle Scholar
  28. Shin J, Lee SY, Kim SH, Kim YB, Cho SJ (2008) Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. Neuroimage 43:236–244PubMedCrossRefGoogle Scholar
  29. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35PubMedGoogle Scholar
  30. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, Lavretsky H, Burggren AC, Cole GM, Vinters HV, Thompson PM, Huang SC, Satyamurthy N, Phelps ME, Barrio JR (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663PubMedCrossRefGoogle Scholar
  31. Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, Kung HF, Kung MP, Houle S (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595PubMedGoogle Scholar
  32. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, Dannals RF, Nandi A, Brasic JR, Hilton J, Lyketsos C, Kung HF, Joshi AD, Skovronsky DM, Pontecorvo MJ (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir F 18). J Nucl Med 51:913–920PubMedCrossRefGoogle Scholar
  33. Yousefi BH, Drzezga A, von Reutern B, Manook A, Schwaiger M, Wester HJ, Henriksen G (2011) A novel 18F-labeled imidazo[2,1-b]benzothiazole (IBT) for high-contrast PET imaging of β-amyloid plaques. ACS Med Chem Lett 2(9):673–677CrossRefGoogle Scholar
  34. Zhuang ZP, Kung MP, Wilson A, Lee CW, Plössl K, Hou C, Holtzman DM, Kung HF (2003) Structure-activity relationship of imidazo[1,2-a]pyridines as ligands for detecting beta-amyloid plaques in the brain. J Med Chem 46:237–243PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Changsheng Gan
    • 1
  • Lin Zhou
    • 1
  • Zhenzhen Zhao
    • 1
  • Haoshu Wang
    • 1
  1. 1.Engineering Research Center of Bio-process of Ministry of EducationHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations