Medicinal Chemistry Research

, Volume 22, Issue 8, pp 3812–3822 | Cite as

Pharmacophore modeling, 3D-QSAR, and molecular docking study on naphthyridine derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1

  • Palani Kirubakaran
  • Karthikeyan Muthusamy
  • Kh. Dhanachandra Singh
  • Selvaraman Nagamani
Original Research

Abstract

The 3-phosphoinositide-dependent protein kinase-1 (PDK1) is an imminent target for discovering novel anticancer drugs. In order to understand the structure–activity correlation of naphthyridine-based PDK-1 inhibitors, we have carried out a combined pharmacophore, three-dimensional quantitative structure–activity relationship (3D-QSAR), and molecular docking studies. The study has resulted in six point pharmacophore models with four hydrogen bond acceptors (A), one hydrogen bond donor (D), and one aromatic ring (R) are used to derive a predictive atom-based 3D-QSAR model. The generated 3D-QSAR model shows that the alignment has good correlation coefficient for the training set compounds which comprises the values of R2 = 0.96, SD = 0.2, and F = 198.2. Test set compounds shows Q2 = 0.84, RMSE = 0.56, and Pearson-R = 0.84. The external validation was carried out to validate the predicted QSAR model which shows good predictive power of \( r_{m}^{2} \) = 0.83 and k = 1.01, respectively. The external validation results also confirm the fitness of the model. The results indicated that, atom-based 3D-QSAR models and further modifications in PDK1 inhibitors via pharmacophore hypothesis are rational for the prediction of the activity of new inhibitors in prospect of drug design.

Keywords

3-Phosphoinositide-dependent protein kinase-1; PDK1 Pharmacophore mapping 3D-QSAR External validation Molecular docking 

References

  1. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bowenes M (1997a) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7:776–789PubMedCrossRefGoogle Scholar
  2. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB, Cohen P (1997b) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269PubMedCrossRefGoogle Scholar
  3. Baryawno N, Sveinbjornsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI (2010) Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/β-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res 70:266–276PubMedCrossRefGoogle Scholar
  4. Basu A, Jasu K, Jayaprakash V, Mishra N, Ojha P, Bhattacharya S (2009) Development of CoMFA and CoMSIA models of cytotoxicity data of anti-HIV-1-phenylamino-1H-imidazole derivatives. Eur J Med Chem 44:2400–2407PubMedCrossRefGoogle Scholar
  5. Bayascas JR, Leslie NR, Parsons R, Fleming S, Alessi DR (2005) Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN (±) mice. Curr Biol 15:1839–1846PubMedCrossRefGoogle Scholar
  6. Belham C, Wu S, Avruch J (1999) Intracellular signalling: PDK1 a kinase at the hub of things. Curr Biol 9:R93–R96PubMedCrossRefGoogle Scholar
  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  8. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664PubMedCrossRefGoogle Scholar
  9. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–7492PubMedCrossRefGoogle Scholar
  10. Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315PubMedCrossRefGoogle Scholar
  11. Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP, Cohen P, Alessi DR, Lucocq J (1999) Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 337:575–583PubMedCrossRefGoogle Scholar
  12. De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, Biesmans B, Van Laethem JL, Peeters M, Humblet Y, Van Cutsem E, Tejpar S (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19:508–515PubMedCrossRefGoogle Scholar
  13. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S, Bardelli A (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712PubMedCrossRefGoogle Scholar
  14. Dixon S, Smondyrev A, Knoll E, Rao S, Shaw D, Friesner R (2006a) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671PubMedCrossRefGoogle Scholar
  15. Dixon SL, Smondyrev AM, Rao SN (2006b) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372PubMedCrossRefGoogle Scholar
  16. Eglen RM, Reisine T (2009) The current status of drug discovery against the human kinome. Assay Drug Dev Technol 7:22–43PubMedCrossRefGoogle Scholar
  17. Evans DA, Doman TN, Thorner DA, Bodkin MJ (2007) 3D QSAR methods: phase and catalyst compared. J Chem Inf Model 47:1248–1257PubMedCrossRefGoogle Scholar
  18. Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, Biroc SL, Alicke B, Bryant J, Yuan S, Buckman BO, Lentz D, Ferrer M, Whitlow M, Adler M, Finster S, Chang Z, Arnaiz DO (2005) Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem 280:19867–19874PubMedCrossRefGoogle Scholar
  19. Flynn P, Wong M, Zavar M, Dean NM, Stokoe D (2000) Inhibition of PDK-1 activity causes a reduction in cell proliferation and survival. Curr Biol 10:1439–1442PubMedCrossRefGoogle Scholar
  20. Fujita N, Tsuruo T (2003) Survival-signaling pathway as a promising target for cancer chemotherapy. Cancer Chemother Pharmacol 52:24–28CrossRefGoogle Scholar
  21. Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH (2004) G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 287:281–291CrossRefGoogle Scholar
  22. Garber K (2006) The second wave in kinase cancer drugs. Nat Biotechnol 24:127–130PubMedCrossRefGoogle Scholar
  23. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276PubMedCrossRefGoogle Scholar
  24. Gopalsamy A, Shi M, Boschelli DH, Williamson R, Olland A, Hu Y, Krishnamurthy G, Han X, Arndt K, Guo B (2007) Discovery of dibenzo[c,f][2,7]naphthyridines as potent and selective 3-phosphoinositide-dependent kinase-1 inhibitors. J Med Chem 50:5547–5549PubMedCrossRefGoogle Scholar
  25. Kim JA (2003) Targeted therapies for the treatment of cancer. Am J Surg 186:264–268PubMedCrossRefGoogle Scholar
  26. Kim D, Chung J (2002) Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol 35:106–115PubMedCrossRefGoogle Scholar
  27. Kim KH, Wissner A, Floyd MB Jr, Fraser HL, Wang YD, Dushin RG, Hu Y, Olland A, Guo B, Arndt K (2009) Benzo[c][2,7]naphthyridines as inhibitors of PDK-1. Bioorg Med Chem Lett 19:5225–5228PubMedCrossRefGoogle Scholar
  28. Komander D, Kular G, Deak M, Alessi DR, van Aalten DMF (2005) Role of T-loop phosphorylation in PDK1 activation, stability, and substrate binding. J Biol Chem 280:18797–18802PubMedCrossRefGoogle Scholar
  29. Lawlor MA, Mora A, Ashby PR, Williams MR, Murray-Tait V, Malone L, Prescott AR, Lucocq JM, Alessi DR (2002) Essential role of PDK1 in regulating cell size and development in mice. EMBO J 21:3728–3738PubMedCrossRefGoogle Scholar
  30. Lin HJ, Hsieh FC, Song H, Lin J (2005) Elevated phosphorylation and activation of PDK-1/AKT pathway in human breast cancer. Br J Cancer 93:1372–1381PubMedCrossRefGoogle Scholar
  31. Lu P, Wei X, Zhang R (2010) CoMFA and CoMSIA 3D-QSAR studies on quionolone caroxylic acid derivatives inhibitors of HIV-1 integrase. Eur J Med Chem 45:3413–3419PubMedCrossRefGoogle Scholar
  32. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRefGoogle Scholar
  33. Mora A, Komander D, van Aalten DMF, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15:161–170PubMedCrossRefGoogle Scholar
  34. Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370:361–371PubMedCrossRefGoogle Scholar
  35. Nittoli T, Dushin RG, Ingalls C, Cheung K, Floyd MB, Fraser H, Olland A, Hu Y, Grosu G, Han X, Arndt K, Guo B, Wissner A (2010) The identification of 8,9-dimethoxy-5-(2-aminoalkoxy-pyridin-3-yl)-benzo[c][2,7]naphthyridin-4-ylamines as potent inhibitors of 3-phosphoinositide-dependent kinase-1 (PDK-1). Eur J Med Chem 45:1379–1386PubMedCrossRefGoogle Scholar
  36. Perrotti N, He RA, Phillips SA, Haft CR, Taylor SI (2001) Activation of serum- and glucocorticoid-induced protein kinase (Sgk) by cyclic AMP and insulin. J Biol Chem 276:9406–9412PubMedCrossRefGoogle Scholar
  37. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G (1998) Phosphorylation and Activation of p70s6k by PDK1. Science 279:707–710PubMedCrossRefGoogle Scholar
  38. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313CrossRefGoogle Scholar
  39. Sahoo S, Brickley DR, Kocherginsky M, Conzen SD (2005) Coordinate expression of the PI3-kinase downstream effectors serum and glucocorticoid-induced kinase (SGK-1) and Akt-1 in human breast cancer. Eur J Cancer 41:2754–2759PubMedCrossRefGoogle Scholar
  40. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA (2005) Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 65:1027–1034PubMedCrossRefGoogle Scholar
  41. Telvekar V, Kundaikar H, Patel K, Chaudhari H (2008) 3-D QSAR and molecular docking studies on aryl benzofuran-2-yl ketoxime derivatives as Candida albicans N-myristoyltransferase inhibitors. QSAR Comb Sci 27:1193–1203CrossRefGoogle Scholar
  42. Toker A, Newton AC (2000) Cellular Signaling: pivoting around PDK-1. Cell 103:185–188PubMedCrossRefGoogle Scholar
  43. Tropsha A (2005) In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley, Weinheim, pp 437–455CrossRefGoogle Scholar
  44. Zeng X, Xu H, Glazer RI (2002) Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1 (PDK1) is associated with the induction of protein kinase Cα. Cancer Res 62:3538–3543PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Palani Kirubakaran
    • 1
  • Karthikeyan Muthusamy
    • 1
  • Kh. Dhanachandra Singh
    • 1
  • Selvaraman Nagamani
    • 1
  1. 1.Department of BioinformaticsAlagappa UniversityKaraikudiIndia

Personalised recommendations