Medicinal Chemistry Research

, Volume 22, Issue 7, pp 3478–3484 | Cite as

Pharmacophore modeling and 3D QSAR analysis of isothiazolidinedione derivatives as PTP1B inhibitors

  • Girdhar Singh Deora
  • Prashant Joshi
  • Vandana Rathore
  • K. Lalith Kumar
  • Renu Ohlyan
  • Ajit Kandale
Original Research


The article describes the development of a robust pharmacophore model and investigation of structure activity relationship analysis of 56 isothiazolidinedione derivatives reported as PTP1B inhibitors. A six-point pharmacophore model consisting of four aromatic rings (R), one hydrogen bond donor (D) and one hydrogen bond acceptor (A) with discrete geometries as pharmacophoric features was developed and the generated pharmacophore model was used to derive a predictive 3D QSAR model for the studied dataset. The obtained 3D QSAR model has an excellent correlation coefficient value (r 2 = 0.98) along with good statistical significance as shown by a high Fisher ratio (F = 428.60). The model also exhibits good predictive power confirmed by the high value of cross-validated correlation coefficient (q 2 = 0.62). The QSAR model suggests that hydrophobic aromatic character is crucial for the PTP1B inhibitory activity at the R-15 site.


Isothiazolidinedione derivatives PTP1B inhibitors Pharmacophore modeling 3D QSAR PHASE 

Supplementary material

44_2012_349_MOESM1_ESM.doc (604 kb)
Supplementary material 1 (DOC 604 kb)


  1. Blaskovich MA, Kim HO (2002) Recent discovery and development of protein tyrosine phosphatase inhibitors. Expert Opin Ther Pat 12:871–905CrossRefGoogle Scholar
  2. Bleasdale JE, Ogg D, Palazuk BJ, Jacob CS et al (2001) Small molecule peptidomimetics containing a novel phosphotyrosine bioisostere inhibit protein tyrosine phosphatase 1B and augment insulin action. Biochemistry 40:5642–5654PubMedCrossRefGoogle Scholar
  3. Burke TR, Ye B, Akamatsu M, Ford H, Yan X, Kole HK, Wolf G, Shoelson SE, Roller PP (1996) 4′-O-[2-(2-Fluoromalonyl)]-l-tyrosine: a phosphotyrosyl mimic for the preparation of signal transduction inhibitory peptides. J Med Chem 39:1021–1027PubMedCrossRefGoogle Scholar
  4. Chen YT, Seto CT (2002) Divalent and trivalent-ketocarboxylic acids as inhibitors of protein tyrosine phosphatases. J Med Chem 45:946–952Google Scholar
  5. Combs AP, Yue EW, Bower M, Ala PJ, Wayland B et al (2005) Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. J Med Chem 48:6544–6548PubMedCrossRefGoogle Scholar
  6. Combs AP, Yue EW, Wayland B, Douty B, Crawley ML et al (2006) Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: synthesis and structure–activity relationships of a peptide scaffold. Bioorg Med Chem 14:5833–5849PubMedCrossRefGoogle Scholar
  7. Combs AP, Sparks RB, Polam P, Zhu W, Crawley ML, Takvorian A et al (2007) Benzothiazole benzimidazole (S)-isothiazolidinone derivatives as protein tyrosine phosphatase-1B inhibitors. Bioorg Med Chem Lett 17:736–740PubMedCrossRefGoogle Scholar
  8. Combs AP, Douty B, Wayland B, Ala PJ, Bower MJ, Pruitt J et al (2008) Isothiazolidinone inhibitors of PTP1B containing imidazoles and imidazolines. Bioorg Med Chem Lett 18:66–71PubMedCrossRefGoogle Scholar
  9. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: methodology and preliminary results. J Comput Aided Mol Des 20:647–671PubMedCrossRefGoogle Scholar
  10. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Colins S, Loy AL, Normandin D, Chenng A, Himms-Hagen JC, Chan C (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548PubMedCrossRefGoogle Scholar
  11. Evans JL, Jallal B (1999) Protein tyrosine phosphatases: their role in insulin action and potential as drug targets. Exp Opin Invest Drugs 8:139–160CrossRefGoogle Scholar
  12. Fu H, Park J, Pei D (2002) Peptidyl aldehydes as reversible covalent inhibitors of protein tyrosine phosphatases. Biochemistry 41:10700–10709PubMedCrossRefGoogle Scholar
  13. Guner OF (2000) Pharmacophore perception, development, and use in drug design. International University Line, La JollaGoogle Scholar
  14. Joshi P, Deora GS, Rathor V, Tanwar OP, Rawat AK, Srivastava AK, Jain D (2012a) Identification of ZINC02765569: a potent inhibitor of PTP1B by vHTS. Med Chem Res. doi: 10.1007/s00044-012-0007-0 Google Scholar
  15. Joshi P, Deora GS, Rathore V, Rawat AK, Srivastava AK, Jain D (2012b) Molecular modeling and synthesis of ZINC02765569 derivatives as protein tyrosine phosphatase 1B inhibitors: lead optimization study. Med Chem Res. doi: 10.1007/s00044-012-0165-0 Google Scholar
  16. Klaman LD, Boss O, Peroni OD, Kim JK, Zabotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489PubMedCrossRefGoogle Scholar
  17. Liljebris C, Larsen SD, Ogg D, Palazuk BJ, Bleasdale JE (2002) Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B: identification of a tetrazole-containing inhibitor with cellular activity. J Med Chem 45:1785–1798PubMedCrossRefGoogle Scholar
  18. Maccari R, Paoli P, Ottana R, Jacomelli M, Ciurleo R, Manao G, Steindl T, Langer T, Vigoritaa MG, Camici G (2007) 5-Arylidine 2,4-thiazolidinedione as inhibitors of PTP1B. Bioorg Med Chem Lett 15:5137–5149CrossRefGoogle Scholar
  19. Martin YC (1978) Quantitative drug design: a critical introduction. Marcel Dekker, New YorkGoogle Scholar
  20. Park H, Bhattarai BR, Ham SW (2009) Structure-based virtual screening approach to identify novel classes of PTP1B inhibitors. European J Med Chem 44:3280–3284CrossRefGoogle Scholar
  21. Sparks RB, Polam P, Zhu W, Crawley ML, Takvorian A, McLaughlin E et al (2007) Benzothiazolebenzimidazole (S)-isothiazolidinone derivatives as protein tyrosine phosphatase-1B inhibitors. Bioorg Med Chem Lett 17:736–740PubMedCrossRefGoogle Scholar
  22. Topliss JG (1983) Quantitative structure-activity relationships of drugs, 19. Academic Press, New YorkGoogle Scholar
  23. Van Drie JH (2003) Pharmacophore discovery: lessons learned. Curr Pharm Design 9:1649–1664CrossRefGoogle Scholar
  24. Xin Z, Oost TK, Abad-Zapatero C, Hajduk PJ, Pei Z et al (2003) Potent, selective inhibitors of protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 13:1887–1890PubMedCrossRefGoogle Scholar
  25. Zhang ZY (2001) Protein tyrosine phosphatases: prospects for therapeutics. Curr Opin Chem Biol 5:416–423PubMedCrossRefGoogle Scholar
  26. Zhang ZY (2003) Chemical and mechanistic approaches to the study of protein tyrosine phosphatases. Acc Chem Res 36:385–392PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Girdhar Singh Deora
    • 1
    • 2
  • Prashant Joshi
    • 1
  • Vandana Rathore
    • 3
  • K. Lalith Kumar
    • 2
  • Renu Ohlyan
    • 4
  • Ajit Kandale
    • 2
  1. 1.School of Pharmaceutical SciencesRajiv Gandhi Prodyogiki VishwavidyalayaBhopalIndia
  2. 2.Institute of Life SciencesUniversity of Hyderabad CampusHyderabadIndia
  3. 3.B. N. Institute of Pharmaceutical SciencesUdaipurIndia
  4. 4.M.M. College of PharmacyAmbalaIndia

Personalised recommendations