Advertisement

Medicinal Chemistry Research

, Volume 22, Issue 8, pp 3675–3686 | Cite as

Syntheses and in vitro biological screening of 1-aryl-10H-[1,2,4]triazolo[3′,4′:3,4][1,2,4]triazino[5,6-b]indoles

  • Kuldip Upadhyay
  • Atul Manvar
  • Roberta Loddo
  • Paolo La CollaEmail author
  • Vijay Virsodiya
  • Jalpa Trivedi
  • Ravi Chaniyara
  • Anamik ShahEmail author
Original Research

Abstract

Structurally diverse 1-aryl-10H-[1,2,4]triazolo[3′,4′:3,4][1,2,4]triazino[5,6-b]indoles 4av were synthesized by regiospecific heterocyclizations. The designed molecular diversity was evaluated in vitro in parallel cell-based assays for cytotoxicity of viruses multiplication supporting cell lines and antiviral activity against viruses representative of two of three genera of the Flaviviridae family. The compound library was also tested against Retrovirus (HIV-1), two Picornaviruses (CVB-2 and Sb-1), and Paramyxoviridae (VSV) representative. Among double-stranded RNA (dsRNA) viruses, Reoviridae representative (Reo-1) was tested. Two representatives of DNA virus families were also included—HSV-1 (Herpesviridae) and VV (Poxviridae). The compounds 4m and 4o were found cytotoxic, having CC50 values ranging from 4 to 30 μM. Moreover, compound 4v has exhibited significant activity (EC50 = 3 μM) against BVDV.

Keywords

1,2,4-Triazines Indoles Triazoles In vitro Cytotoxicity Antiviral 

Notes

Acknowledgments

The authors are thankful to the “National Facility for Drug Discovery through New Chemical Entities (NCEs) Development and Instrumentation Support to Small Manufacturing Pharma Enterprise” under Drugs and Pharmaceutical Research Support (DPRS) project jointly funded by DST (India), Gujarat Industries Commissionerate (Government of Gujarat), and Saurashtra University, Rajkot (India).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel‐Rahman RM, Makkia MST, Alib TES, Ibrahim MA (2010) 1,2,4‐Triazine chemistry part I: orientation of cyclization reactions of functionalized 1,2,4‐ triazine derivatives. Eur J Chem 1: 236–245. doi: 10.5155/eurjchem.1.3.236-245.54 (and references cited therein)
  2. Abraham S, Hadd MJ, Tran L, Vickers T, Sindac J, Milanov ZV, Holladay MW, Bhagwat SS, Hua H, Pulido JMF, Cramer MD, Gitnick D, James J, Dao A, Belli B, Armstrong RC, Treiber DK, Liu G (2011) Novel series of pyrrolotriazine analogs as highly potent pan-Aurora kinase inhibitors. Bioorg Med Chem Lett 21:5296–5300. doi: 10.1016/j.bmcl.2011.07.027 PubMedCrossRefGoogle Scholar
  3. Ashour FA, Rida SM, El-Hawash SAM, ElSemary MM, Badr MH (2012) Synthesis, anticancer, anti-HIV-1, and antimicrobial activity of some tricyclic triazino and triazolo[4,3-e]purine derivatives. Med Chem Res 21:1107–1119. doi: 10.1007/s00044-011-9612-6 CrossRefGoogle Scholar
  4. Ban K, Duffy S, Khakham Y, Avery YM, Hughes A, Montagnat O, Katneni K, Ryan E, Baell JB (2010) 3-Alkylthio-1,2,4-triazine dimers with potent antimalarial activity. Bioorg Med Chem Lett 20:6024–6029. doi: 10.1016/j.bmcl.2010.08.065 PubMedCrossRefGoogle Scholar
  5. Buckwold V, Wilson R, Nalca A, Beer B, Voss T, Turpin J, Buckheit R III, Wei J, Wenzel-Mathers M, Walton E, Smith R, Pallansch M, Ward P, Wells J, Chuvala L, Sloane S, Paulman R, Russell J, Hartman T, Ptak R (2004) Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antiviral Res 61:57–62. doi: 10.1016/S0166-3542(03)00155-4 PubMedCrossRefGoogle Scholar
  6. Carta A, Loriga M, Paglietti G, Ferrone M, Fermeglia M, Pricl S, Sanna T, Ibba C, La Colla P, Loddo R (2007) Design, synthesis, and preliminary in vitro and in silico antiviral activity of [4,7]phenantrolines and 1-oxo-1,4-dihydro-[4,7]phenantrolines against single-stranded positive-sense RNA genome viruses. Bioorg Med Chem 15:1914–1927. doi: 10.1016/j.bmc.2007.01.005 PubMedCrossRefGoogle Scholar
  7. Carta A, Briguglio I, Piras S, Corona S, Boatto G, Nieddu M, Giunchedi P, Marongiu EM, Giliberti G, Iuliano F, Blois S, Ibba C, Busonera B, La Colla P (2011) Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors. Bioorg Med Chem 19:7070–7084. doi: 10.1016/j.bmc.2011.10.009 PubMedCrossRefGoogle Scholar
  8. Cesarini S, Spallarossa A, Ranise A, Schenone A, La Colla P, Collu G, Sanna G, Loddo R (2010) (Hetero)aroyl esters of 2-(N-phthalimido)ethanol and analogues: parallel synthesis, anti-HIV-1 activity and cytotoxicity. Med Chem Res 19:311–336. doi: 10.1007/s00044-009-9192-x CrossRefGoogle Scholar
  9. Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH (2012) Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903. doi: 10.1021/jm201376w PubMedCrossRefGoogle Scholar
  10. Dyckman AJ, Li T, Pitt S, Zhang R, Shen DR, McIntyre KW, Gillooly KM, Shuster DJ, Doweyko AM, Sack JS, Kish K, Kiefer SE, Newitt JA, Zhang H, Marathe PH, McKinnon M, Barrish JC, Dodd JH, Schieven GL, Leftheris K (2011) Discovery of pyrrolo[2,1-f][1,2,4]triazine C6-ketones as potent, orally active p38α MAP kinase inhibitors. Bioorg Med Chem Lett 21:4633–4637. doi: 10.1016/j.bmcl.2011.05.091 PubMedCrossRefGoogle Scholar
  11. Elghandour AHH, Ali MA, Ibrahem YM (2006) Synthesis, reactions, and antiviral activity of 1-(1H-Pyrazolo[3,4-b]pyridin-5-yl)ethanone and pyrido[2,3:3,4]pyrazolo[5,1-c][1,2,4]triazine derivatives. Phosphorus Sulfur 181:1087–1102. doi: 10.1080/10426500500326404 CrossRefGoogle Scholar
  12. Giampieri M, Balbi A, Mazzei M, La Colla P, Ibba C, Loddo R (2009) Antiviral activity of indole derivatives. Antiviral Res 83:179–185. doi: 10.1016/j.antiviral.2009.05.001 PubMedCrossRefGoogle Scholar
  13. Goodman MM, Paudler WW (1977) 2,5-Dihydro-3-azido-5-oxo-1,2,4-triazines and related compounds. Syntheses and structure elucidation. J Org Chem 42:1866–1869. doi: 10.1021/jo00431a009 CrossRefGoogle Scholar
  14. Gupta L, Sunduru N, Verma A, Srivastava S, Gupta S, Goyal N, Chauhan PMS (2010) Synthesis and biological evaluation of new [1,2,4]triazino[5,6-b]indol-3-ylthio-1,3,5-triazines and [1,2,4]triazino[5,6-b]indol-3-ylthio-pyrimidines against Leishmania donovani. Eur J Med Chem 45:2359–2365. doi: 10.1016/j.ejmech.2010.02.015 PubMedCrossRefGoogle Scholar
  15. Joshi KC, Chand P (1980) A novel tetracyclic ring system. 10H-tetrazolo[5′,1′:3,4][1,2,4] triazino[5,6-b]indole. J Heterocycl Chem 17:1783–1784CrossRefGoogle Scholar
  16. Kossakowski J, Pakosinska-Parys M, Struga M, Dybala I, Koziol A, La Colla P, Marongiu L, Ibba C, Collu D, Loddo R (2009) Synthesis and evaluation of in vitro biological activity of 4-substituted arylpiperazine derivatives of 1,7,8,9-tetrachloro-10,10-dimethoxy-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione. Molecules 14:5189–5202. doi: 10.3390/molecules14125189 PubMedCrossRefGoogle Scholar
  17. Li H, Tatlock J, Linton A, Gonzalez J, Jewell T, Patel L, Ludlum S, Drowns M, Rahavendran SV, Skor H, Hunter R, Shi ST, Herlihy KJ, Parge H, Hickey M, Yu X, Chau F, Nonomiya J, Lewis C (2009) Discovery of (R)-6-cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4] triazolo [1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihydropyran-2-one (PF-00868554) as a potent and orally available hepatitis C virus polymerase inhibitor. J Med Chem 52:1255–1258. doi: 10.1021/jm8014537 PubMedCrossRefGoogle Scholar
  18. Maarouf AR, Farahat AA, Selim KB, Eisa HM (2012) Synthesis and antiviral activity of benzimidazolyl-and triazolyl-1,3,5-triazines. Med Chem Res 21:703–710. doi: 10.1007/s00044-011-9574-8 CrossRefGoogle Scholar
  19. Mesaros EF, Thieu TV, Wells GJ, Zificsak CA, Wagner JC, Breslin HJ, Tripathy R, Diebold JL, McHugh RJ, Wohler AT, Quail MR, Wan W, Lu L, Huang Z, Albom MS, Angeles TS, Wells-Knecht KJ, Aimone LD, Cheng M, Ator MA, Ott GR, Dorsey DB (2012) Strategies to mitigate the bioactivation of 2-anilino-7-aryl-pyrrolo[2,1-f][1,2,4]triazines: identification of orally bioavailable, efficacious ALK inhibitors. J Med Chem 55:115–125. doi: 10.1021/jm2010767 PubMedCrossRefGoogle Scholar
  20. Modzelewska-Banachiewicza B, Kamińska T (2001) Antiviral activity of the products of cyclization of dimethyl 2-[(1-arylamino-1-arylmethylidene)hydrazono]succinate. Eur J Med Chem 36:93–99CrossRefGoogle Scholar
  21. Mojzych M, Karczmarzyk Z, Rykowski A (2005) Synthesis and structure of 7-methyl-5-phenyl-1H-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine. J Chem Crystallogr 35:151–155. doi: 10.1007/s10870-005-2805-4 CrossRefGoogle Scholar
  22. Monge A, Palop J, Ramirez C, Font M, Fernandez-Alvarez E (1987) New 5H–1,2,4-triazino[5,6-b]indole and aminoindole derivatives. Synthesis and studies as inhibitors of blood platelet aggregation, anti-hypertensive agents and thromboxane synthetase inhibitors. Eur J Med Chem 26:179–188CrossRefGoogle Scholar
  23. Paeshuyse J, Leyssen P, Mabery E, Boddeker N, Vrancken R, Froeyen M, Ansari IH, Dutartre H, Rozenski J, Gil LHVG, Letellier C, Lanford R, Canard B, Koenen F, Kerkhofs P, Donis RO, Herdewijn P, Watson J, De Clercq E, Puerstinger G, Neyts J (2006) A novel, highly selective inhibitor of pestivirus replication that targets the viral RNA-dependent RNA polymerase. J Virol 80:149–160. doi: 10.1128/JVI.80.1.149-160.2006 PubMedCrossRefGoogle Scholar
  24. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyster J, De Clercq E (1998) Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods 20:309–321. doi: 10.1016/0166-0934(88)90134-6 CrossRefGoogle Scholar
  25. Ram VJ, Dubey V, Vlietinck (1987) Triazolotriazines as potential chemotherapeutic agents VI. J Heterocycl Chem 24:1435–1437CrossRefGoogle Scholar
  26. Shawali AS, Gomha SM (2002) Regioselectivity in 1,5-electrocyclization of N-[as-triazin-3-yl]nitrilimines. Synthesis of s-triazolo[4,3-b]-as-triazin-7(8H)-ones. Tetrahedron 58:8559–8564. doi: 10.1016/S0040-4020(02)00946-8 CrossRefGoogle Scholar
  27. Shelke SM, Bhosale SH (2010) Synthesis, antidepressant evaluation and QSAR studies of novel 2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)-N-(substituted phenyl)acetamides. Bioorg Med Chem Lett 20:4661–4664. doi: 10.1016/j.bmcl.2010.05.100 PubMedCrossRefGoogle Scholar
  28. Sivendran S, Jones V, Sun D, Wang Y, Grzegorzewicz AE, Scherman MS, Napper AD, McCammond JA, Lee RE, Diamond SL, McNeil M (2010) Identification of triazinoindol-benzimidazolones as nanomolar inhibitors of the Mycobacterium tuberculosis enzyme TDP-6-deoxy-D-xylo-4-hexopyranosid-4-ulose 3,5-epimerase (RmlC). Bioorg Med Chem 18:896–908. doi: 10.1016/j.bmc.2009.11.033 PubMedCrossRefGoogle Scholar
  29. Stachulski AV, Pidathala C, Row EC, Sharma R, Berry NG, Lawrenson AS, Moores SL, Iqbal M, Bentley J, Allman SA, Edwards G, Helm A, Hellier J, Korba BE, Semple JE, Rossignol J-F (2011) Thiazolides as novel antiviral agents. 2. Inhibition of hepatitis C virus replication. J Med Chem 54:8670–8680. doi: 10.1021/jm201264t PubMedCrossRefGoogle Scholar
  30. Sun X-Y, Zhang Z, Wei C-X, Piao H-R, Quan Z-S (2009) Design, synthesis of 8-alkoxy-5,6-dihydro-[1,2,4]triazino[4,3-a]quinolin-1-ones with anticonvulsant activity. Eur J Med Chem 44:1265–1270. doi: 10.1016/j.ejmech.2008.09.003 PubMedCrossRefGoogle Scholar
  31. Sztanke K, Pasternak K, Rajtar B, Sztanke M, Majekc M, Polz-Dacewicz M (2007) Identification of antibacterial and antiviral activities of novel fused 1,2,4-triazine esters. Bioorg Med Chem 15:5480–5486. doi: 10.1016/j.bmc.2007.05.048 PubMedCrossRefGoogle Scholar
  32. Sztanke K, Tuzimski T, Sztanke M, Rzymowska J, Pasternak K (2011) Synthesis, structure elucidation, determination of the lipophilicity and identification of antitumour activities in vitro of novel 3-(2-furanyl)-8-aryl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones with a low cytotoxicity towards normal human skin fibroblast cells. Bioorg Med Chem 19:5103–5116. doi: 10.1016/j.bmc.2011.07.027 PubMedCrossRefGoogle Scholar
  33. Tonelli M, Boido V, La Colla P, Loddo R, Posocco P, Paneni MS, Fermeglia M, Pricl S (2010) Pharmacophore modeling, resistant mutant isolation, docking, and MM-PBSA analysis: combined experimental/computer-assisted approaches to identify new inhibitors of the bovine viral diarrhea virus (BVDV). Bioorg Med Chem 18:2304–2316. doi: 10.1016/j.bmc.2010.01.058 PubMedCrossRefGoogle Scholar
  34. Tonelli M, Vettoretti G, Tasso B, Novelli F, Boido V, Sparatore F, Busonera B, Ouhtit A, Farci P, Blois S, Giliberti G, La Colla P (2011) Acridine derivatives as anti-BVDV agents. Antiviral Res 91:133–141. doi: 10.1016/j.antiviral.2011.05.005 PubMedCrossRefGoogle Scholar
  35. Wang J, Wang X, Chen Y, Chen S, Chen G, Tong L, Meng L, Xie Y, Ding J, Yang C (2012) Discovery and bioactivity of 4-(2-arylpyrido[3′,2′:3,4]pyrrolo[1,2-f][1,2,4]-triazin-4-yl)morpholine derivatives as novel PI3K inhibitors. Bioorg Med Chem Lett 22:339–342. doi: 10.1016/j.bmcl.2011.11.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Kuldip Upadhyay
    • 1
  • Atul Manvar
    • 2
  • Roberta Loddo
    • 3
  • Paolo La Colla
    • 3
    Email author
  • Vijay Virsodiya
    • 4
  • Jalpa Trivedi
    • 5
  • Ravi Chaniyara
    • 6
  • Anamik Shah
    • 7
    Email author
  1. 1.Department of ChemistryRegional Forensic Science LaboratoryRajkotIndia
  2. 2.Centre for Synthesis & Chemical Biology, School of Chemistry & Chemical BiologyUniversity College DublinDublin 4Ireland
  3. 3.Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Microbiologia e Virologia Generale e Biotecnologie MicrobicheUniversità degli Studi di CagliariCagliariItaly
  4. 4.Division of Intellectual Property Right, R & D CentreDishman PharmaceuticalsAhmedabadIndia
  5. 5.Department of Medicinal ChemistryISF College of PharmacyMogaIndia
  6. 6.New Drug Discovery DivisionWockhardt Research CentreAurangabadIndia
  7. 7.National Facility for Drug Discovery, Department of ChemistrySaurashtra UniversityRajkotIndia

Personalised recommendations