Medicinal Chemistry Research

, Volume 22, Issue 7, pp 3527–3535 | Cite as

Synthesis, characterization, and biological evaluation of novel thiazole and pyrazole derivatives of quinoline-4-carboxylic acid as potential antimicrobial agents

  • Abha BishnoiEmail author
  • Anil Kumar Tiwari
  • Suruchi Singh
  • Arun Sethi
  • Chandrakant Mani Tripathi
  • Bikram Banerjee
Original Research


A series of quinoline-based heterocycles prepared and bioevaluated for their possible antimicrobial activity against a panel of gram-positive bacteria [Staphylococcus aureus (ATCC-9144) and Bacillus subtilis (ATCC-6633)] and gram-negative bacteria [Pseudomonas aeruginosa (ATCC-25615), and Escherichia coli (MTCC-739)], and fungal strains [Candida albicans (ATCC-24433), Aspergillus niger (MTCC-872), and Aspergillus fumigatus (MTCC-343)] by the known methods. All the prepared quinoline derivatives have shown significant antimicrobial activities. Few compounds, viz. 4b, 4c and 4a, 4c proved to be active at low concentrations against Sa and Ca, respectively, while compounds 4a, 6d, and 6b showed milder inhibitory effects against other microbes. The structures of newly synthesized compounds were characterized by elemental analysis, Infrared (IR), 1HNMR, 13C-NMR and Mass-spectroscopy.


Quinoline-4-carboxylic acid Acetophenone Thiosemicarbazide Polyphosphoric acid Antimicrobial activity 



The authors are thankful to the Head, Department of Chemistry, University of Lucknow, Lucknow for providing necessary Laboratory facilities and to the Director, Central Drug Research Institute (CDRI), Lucknow, India for providing spectral, elemental, and biological activity data.


  1. Adhikary PK, Das SK, JrHess BA (1976) Synthesis and antihypertensive activity of some imidazoindole derivatives. J Med Chem 19:1352–1354PubMedCrossRefGoogle Scholar
  2. Alhaider AA (1986) Antihistamine, anticholinergic and cardiovascular effects of 2-substituted-4-phenylquinoline derivatives. Life Sci 38:601–608PubMedCrossRefGoogle Scholar
  3. Andreani A, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M (2001) Synthesis and antitubercular activity of imidazo[2,1-b]thiazoles. Eur J Med Chem 36:743–746PubMedCrossRefGoogle Scholar
  4. Bachir M, Riffaud JP, Lacolle JY, Lemoine J, Almeida AD, Hauziaux P, Danree B (1990) Synthesis and anticonvulsant activity of some 2-(N-substituted glycylamino)-4-methyl thiazoles. Eur J Med Chem 25:71–74CrossRefGoogle Scholar
  5. Bakr F, Wahab A, Mohamed SF, Amr AGE, Abdalla MM (2008) Synthesis and reactions of thiosemicarbazides, triazoles, and Schiff bases as antihypertensive α-blocking agents. Monatsh Chem 139:1083–1090CrossRefGoogle Scholar
  6. Bauer AW, Kirby M, Sherries JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Path 45:493PubMedGoogle Scholar
  7. Bishnoi A, Saxena R, Singh S, Rani A, Joshi MN, Bajpai SK (2009) Synthesis and biological evaluation of a series of 4-(arylamido/imido-alkyl)-5-(arylideno-4-oxo-2- thio-imidazolidinyl)-N-(methyl-phenyl-imino) Acridinium Iodides as Potential Antiviral Agents. Lett Drug Des Discov 6(4):252–257CrossRefGoogle Scholar
  8. Bishnoi A, Srivastava K, Singh S, Tripathi CKM (2010) Synthesis of some novel piperazine salts and their antimicrobial property against Escherichia coli and Bacillus subtilis. Der Pharma Chemica 2(5):446–452Google Scholar
  9. Bishnoi A, Srivastava K, Singh S, Tripathi CKM (2011) Facile synthesis of 2′-Phenyl-4′-[3″-(2″-oxo-1″H indolidene)-5′-oxo-imidozolyl]-1′-[{p-1-(4-aryl-1- biphenyl)}]/4-aryl-3-chloro azetidinones: β lactam derivatives as antimicrobes. Eur J Chem 2(3):359–364CrossRefGoogle Scholar
  10. Bondock S, Khalifa W, Fadda AA (2007) Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde. Eur J Med Chem 42:948–954PubMedCrossRefGoogle Scholar
  11. Bondock S, Fadaly W, Metwally MA (2010) Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur J Med Chem 45:3692–3701PubMedCrossRefGoogle Scholar
  12. Charris JE, Lobo GM, Camacho J, Ferrer R, Barazarte A, Domínguez J, Gamboa N, Rodrigues JR, Angel JE (2007) Synthesis and antimalarial activity of (E) 2-(2′-Chloro-3′-Quinolinylmethylidene)-5,7-Dimethoxyindanones. Lett in Drug Design Discov 4:49–54CrossRefGoogle Scholar
  13. Conklin JD, Hollifield RD (1970) Studies on the absorption, distribution, and elimination of amiquinsin hydrochloride, a hypotensive drug. Eur J Pharm 10:360–368CrossRefGoogle Scholar
  14. El-Sabbagh OI, Baraka MM, Ibrahim SM, Pannecouque C, Andrei G, Snoeck R, Balzarini J, Rashad AA (2009) Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur J Med Chem 44:3746–3753PubMedCrossRefGoogle Scholar
  15. Eswaran S, Adhikari AV, Kumar RA (2010a) New 1,3-oxazolo[4,5-c]quinoline derivatives: synthesis and evaluation of antibacterial and antituberculosis properties. Eur J Med Chem 45:957–966PubMedCrossRefGoogle Scholar
  16. Eswaran S, Adhikari AV, Chowdhary IH, Pal NK, Thomas KD (2010b) New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. Eur J Med Chem 45:3374–3383PubMedCrossRefGoogle Scholar
  17. Fleming FF, Yao L, Ravikumar PCR, Funk L, Shook BC (2010) Nitrile-containing pharmaceuticals: efficacious Role of the Nitrile pharamacophores. J Med Chem 53:7902–7917PubMedCrossRefGoogle Scholar
  18. Fujimoto S (2007) Promising antitumor activity of a novel quinoline derivative, TAS-103, against fresh clinical specimens of eight types of tumors measured by flow cytometric DNA analysis. Bio Pharm Bull 30:1923–1929CrossRefGoogle Scholar
  19. Hans RH, Guantai EM, Lategan C, Smith PJ, Wan B, Franzblau SG, Gut J, Rosenthal JP, Chibale K (2010) Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg Med Chem Lett 20:942–944PubMedCrossRefGoogle Scholar
  20. Holla BS, Poojary KN, Poojary B, Bhat KS, Kumar NS (2005) Synthesis, characterization and antibacterialactivity studies on some fluorine containing quinoline-4-carboxylic acids and their derivatives. Indian J Chem 44B:2114–2119Google Scholar
  21. Jandhyala BS, Grega GJ, Buckley JP (1967) Hypotensive activity of several quinoline derivatives. Arch Int Pharmacodyn Ther 167:126–217Google Scholar
  22. Kaminski K, Obniska J (2008) Design, synthesis, and anticonvulsant activity of N-phenylamino derivatives of 3,3-dialkyl-pyrrolidine-2,5-diones and hexahydro-isoindole-1,3-diones. Bioorg Med Chem 16:4921–4931PubMedCrossRefGoogle Scholar
  23. Karaman I, Sahin F, Gulluce M, Ogutcu H, Sengul M, Adiguzel A (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol 85:231–235PubMedCrossRefGoogle Scholar
  24. Kolavi G, Hegde V, Khazi IA, Gadad P (2006) Synthesis and evaluation of antitubercular activity of imidazo[2,1-b][1,3,4]thiadiazole derivatives. Bioorg Med Chem 14:3069–3080PubMedCrossRefGoogle Scholar
  25. Kumar S, Bawa S, Drabu S, Gupta H, Machwal L, Kumar R (2011) Synthesis, antidepressant and antifungal evaluation of novel 2-chloro-8-methylquinoline amine derivatives. Eur J Med Chem 46:670–675PubMedCrossRefGoogle Scholar
  26. Labanauskas L, Kalcas V, Uderenaite E, Gaidelis P, Brukstus A, Dauksas VM (2001) Synthesis of 3-(3,4-dimethoxyphenyl)-1 H-1,2,4-triazole-5-thiol and 2-amino-5-(3,4-dimethoxyphenyl)-1,3,4-thiadiazole derivatives exhibiting anti-inflammatory activity. Pharmazie 56:617–619PubMedGoogle Scholar
  27. Messaoudi S, Sancelme M, Housset VP, Aboab B, Moreau P, Prudhomme M (2004) Synthesis and biological evaluation of oxindoles and benzimidazolinones. Eur J Med Chem 39:453–458PubMedCrossRefGoogle Scholar
  28. Mullican MD, Wilson MW, Conner DT, Kostlan CR, Schrier DJ, Dyer RD (1993) Design of 5-(3,5-di-tert-butyl-4-hydroxypheny)-1,3,4-thiadiazoles, -1,3,4-oxadiazoles, and -1,2,4-triazoles as orally active, nonulcerogenic antiinflammatory agents. J Med Chem 36:1090–1099PubMedCrossRefGoogle Scholar
  29. Ozdemir A, Zitouni GT, Kaplancikli ZA, Revial G, Guven K (2007) Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur J Med Chem 42:403–409PubMedCrossRefGoogle Scholar
  30. Palit P, Paira P, Hazra A, Banerjee S, Gupta AD, Dastidar SG, Mondal NB (2009) Phase transfer catalyzed synthesis of bis-quinolines: antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation. Eur J Med Chem 44:845–853PubMedCrossRefGoogle Scholar
  31. Parekh N, Maheria K, Patel P, Rathod M (2011) Study on antibacterial activity for multidrug resistance stain by using phenyl pyrazolones substituted 3-amino 1h-pyrazolon (3,4-b) quinoline derivative in vitro condition. Int J Pharm Tech Res 3:540–548Google Scholar
  32. Robert M, Josef J, Buchta V, Silva L, Niedbala H, Podeszwa B, Palka A, Majrez-Maniecka K, Oleksyn B, Polanski J (2006) Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem 14:3498–3592Google Scholar
  33. Ryu CK, Lee JY, Jeong SH, Nho JH (2009) Synthesis and antifungal activity of 1H-pyrrolo[3,2-g]quinoline-4,9-diones and 4,9-dioxo-4,9-dihydro-1H-benzo[f]indoles. Bioorg Med Chem Lett 19:146–148PubMedCrossRefGoogle Scholar
  34. Sahm DF, Washington JA (1991) Antibacterial susceptibility tests: dilution methods. In: Ballows A, Hausler WJ Jr, Herrmann KL, Isenberg HD, Shadomy HJ (eds) Manual of Clinical Microbiology, 5th edn. ASM, Washington, DC, p 1105Google Scholar
  35. Sohda T, Mizuno K, Momose Y, Ikeda H, Fujita T, Meguro K (1992) Studies on antidiabetic agents. 11. Novel thiazolidinedione derivatives as potent hypoglycemic and hypolipidemic agents. J Med Chem 35:2617–2626PubMedCrossRefGoogle Scholar
  36. Song Y, Connor DT, Sercel AD, Sorenson RJ, Doubleday R, Unangst PC, Roth BD, Beylin VG, Gilbertsen RB, Chan K, Schrier DJ, Guglietta A, Bornemeier DA, Dyer RD (1999) Synthesis, structure-activity relationships, and in vivo evaluations of substituted di-tert-butylphenols as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 2. 1,3,4- and 1,2,4-thiadiazole series. J Med Chem 42:1161–1169PubMedCrossRefGoogle Scholar
  37. Stawinska MK, Clercq ED, Balzarini J (2009) Synthesis and antiviral activity evaluation of acyclic 2′-azanucleosides bearing a phosphonomethoxy function in the side chain. Bioorg Med Chem 17:3756–3762CrossRefGoogle Scholar
  38. Tempone AG, da Silva AC, Brandt CA, Martinez FS, Borborema SE, da Silveira MA, Jr de Andrade HF (2005) Synthesis and antileishmanial activities of novel 3-substituted quinolines. Antimicro Agents Chemother 49:1076–1080CrossRefGoogle Scholar
  39. Veronique I, Veronique S, Coudert P, Seilles E, Couquelet J (1998) Synthesis of new pyrrolo [1,2-d] [1,2,4] triazines and thiazolo [3,4-d] [1,2,4] triazines as immunostimulating agents. Bioorg Med Chem 6:349–354CrossRefGoogle Scholar
  40. Vijesh AM, Isloor AM, Prabhu V, Ahmad S, Malladi S (2010) Synthesis, characterization and anti-microbial studies of some novel 2,4-disubstituted thiazoles. Eur J Med Chem 45:5460–5464PubMedCrossRefGoogle Scholar
  41. Yamato M, Takeuchi Y, Hashigaki K, Ikeda Y, Chag MR, Takeuchi K, Matsuhima M, Tsuruo T, Tashiro T, Tsukagoshi S (1989) Synthesis and antitumor activity of fused tetracyclic quinoline derivatives. J Med Chem 32:1295–1300PubMedCrossRefGoogle Scholar
  42. Yamato M, Takeuchi Y, Chang MR, Hashigaki K, Tsuruo T, Tashiro T, Tsukagoshi S (1990) Synthesis and antitumor activity of fused quinoline derivatives. Chem Pharm Bull 38:3048–3052PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Abha Bishnoi
    • 1
    Email author
  • Anil Kumar Tiwari
    • 1
  • Suruchi Singh
    • 1
  • Arun Sethi
    • 1
  • Chandrakant Mani Tripathi
    • 2
  • Bikram Banerjee
    • 2
  1. 1.Department of ChemistryLucknow UniversityLucknowIndia
  2. 2.Division of Fermentation TechnologyCentral Drug Research InstituteLucknowIndia

Personalised recommendations