Medicinal Chemistry Research

, Volume 21, Issue 12, pp 4301–4310 | Cite as

Synthesis, anti-microbial evaluation, and QSAR studies of 4-amino-3-hydroxy-naphthalene-1-sulfonic acid derivatives

  • Rajesh Kumar
  • Pradeep Kumar
  • Mahesh Kumar
  • Balasubramanian NarasimhanEmail author
Original Research


A series of 4-amino-3-hydroxy-naphthalene-1-sulfonic acid derivatives (118) was synthesized and tested in vitro for its anti-microbial potential. The results of anti-microbial studies indicated that derivatives having 3,4,5 trimethoxy (6) and 2,4 dichloro (17) groups on benzylidene amino portion were found to be most effective ones. The mt-QSAR model for anti-microbial activity revealed the importance of topological parameter, valence zero-order molecular connectivity index (0χv) in describing the anti-microbial activity of synthesized 4-amino-3-hydroxy-naphthalene-1-sulfonic acid derivatives.


Naphthalene-1-sulfonic acid derivatives Anti-microbial mt-QSAR 


  1. Abdel-Gawad SM, El-Gaby MSA, Heiba HI, Aly HM, Ghorab MM (2005) Synthesis and radiation stability of some new biologically active hydroquinoline and pyrimido[4,5-b]quinoline derivatives. J Chin Chem Soc 52:1227–1236Google Scholar
  2. Amir M, Javed SA, Hassan MZ (2011) Synthesis and antimicrobial activity of pyrazolinones and pyrazoles having benzothiazole moiety. Med Chem Res. doi:10.1007/s00044-011-9642-0 (in press)
  3. Bajaj S, Sambi SS, Madan AK (2005) Prediction of anti-inflammatory activity of N-arylanthranilic acids: computational approach using refined Zagreb indices. Croat Chem Acta 78(2):165–174Google Scholar
  4. Balaban AT (1982) Highly discriminating distance based topological indices. Chem Phys Lett 89:399–404CrossRefGoogle Scholar
  5. Cappucino JG, Sherman N (1999) Microbiology—a laboratory manual. Addison Wesley, California, p 263Google Scholar
  6. Chugh TD (2008) Emerging and re-emerging bacterial diseases in India. J Biosci 33(4):549–555PubMedCrossRefGoogle Scholar
  7. Cruz-Monteagudo M, Gonzalez-Diaz H, Aguero-Chapin G, Santana L, Borges F, Dominguez ER, Podda G, Uriarte E (2007) Computational chemistry development of a unified free energy Markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J Comput Chem 28(11):1909–1923PubMedCrossRefGoogle Scholar
  8. Ebenezer GJ, Norman G, Joseph A, Daniel S, Job CK (2002) Drug resistant Mycobacterium leprae—results of mouse footpad studies from a laboratory in south India. Indian J Lepr 74:301–312PubMedGoogle Scholar
  9. El-Saghier AMM, Naili MB, Rammash BK, Saleh NA, Kreddanc KM (2007) Synthesis and antibacterial activity of some new fused chromenes. ARKIVOK 13:83–91Google Scholar
  10. Emami S, Falahati M, Banifafemi A, Shafiee A (2004) Stereoselective synthesis and antifungal activity of (Z)-trans-3-azolyl-2-methylchromanone oxime ethers. Bioorgan Med Chem 12:5881–5889CrossRefGoogle Scholar
  11. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1998) Vogel’s text book of practical organic chemistry. Addison Wesley Longman Inc., California, p 34Google Scholar
  12. Furusjo E, Svenson A, Rahmberg M, Andersson M (2006) The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Chemosphere 63:99–108PubMedCrossRefGoogle Scholar
  13. Golbraikh A, Tropsha A (2002) Beware of q 2! J Mol Graphics Model 20:269–276CrossRefGoogle Scholar
  14. Gonzalez-Diaz H, Prado–Prado FJ (2008) Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: multispecies activity models for antifungals. J Comput Chem 29(4):656–667PubMedCrossRefGoogle Scholar
  15. Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics-current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7(10):1015–1029PubMedCrossRefGoogle Scholar
  16. Gonzalez-Diaz H, Gonzalez-Diaz Y, Santana L, Ubeira FM, Uriarte E (2008) Networks and connectivity indices. Proteomics 8(4):750–778PubMedCrossRefGoogle Scholar
  17. Hansch C, Fujita T (1964) p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626CrossRefGoogle Scholar
  18. Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ (1973) “Aromatic” substituent constants for structure-activity correlations. J Med Chem 16(11):1207–1216PubMedCrossRefGoogle Scholar
  19. Hussain Z, Khan KM, Perveen S, Nawaz Y, Bukhari IH (2011) Antifungal activity of the pyrolyzate of glucose, sucrose and starch in comparison to paper pyrolyzate. J Chem Soc Pak 33(5):694–697Google Scholar
  20. Hyperchem 6.0 (1993) Hypercube Inc., FloridaGoogle Scholar
  21. Ibrahim MA, Sharif SAI, El-Tajory AN, Elamari AA (2011) Synthesis and antibacterial activities of some schiff bases. E-J Chem 8(1):212–216CrossRefGoogle Scholar
  22. Jha TK (2006) Drug unresponsiveness and combination therapy for Kala Azar. Indian J Med Res 123:389–398PubMedGoogle Scholar
  23. Judge V, Narasimhan B, Ahuja M, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011a) Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of isonicotinic acid-1-(substituted phenyl)-ethylidene/cycloheptylidene hydrazides. Med Chem Res. doi:10.1007/s00044-011-9705-2 (in press)
  24. Judge V, Narasimhan B, Ahuja M, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011b) Isonicotinic acid hydrazide derivatives: synthesis, antimicrobial activity and QSAR studies. Med Chem Res. doi:10.1007/s00044-011-9662-9 (in press)
  25. Khan KM, Mughala UR, Khana S, Perveen S, Choudhary MI (2009) Synthesis and antibacterial and antifungal activity of 5-substituted imidazolones. Lett Drug Des Discov 6:69–77CrossRefGoogle Scholar
  26. Kier LB, Hall LH (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Sci. Pub, Amsterdam, pp 455–489Google Scholar
  27. Kumar A, Narasimhan B, Kumar D (2007) Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorgan Med Chem 15:4113–4124CrossRefGoogle Scholar
  28. Kumar D, Judge V, Narang R, Sangwan S, Cercq ED, Balzarini J, Narasimhan B (2010a) Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J of Med Chem 45:2806–2816CrossRefGoogle Scholar
  29. Kumar P, Narasimhan B, Yogeswari P, Sriram D (2010b) Synthesis and antitubercular activities of substituted benzoic acid N’-(substituted benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides. Eur J of Med Chem 45:6085–6089CrossRefGoogle Scholar
  30. Kumar D, Narang A, Judge V, Kumar D, Narasimhan B (2011) Antimicrobial evaluation of 4-methylsulfanyl benzylidene/3-hydroxy benzylidene hydrazides and QSAR studies. Med Chem Res. doi:10.1007/s00044-010-9543-7 (in press)
  31. Laxmi SV, Rajitha B (2011) Synthesis and antimicrobial activity of newer indole semicarbazones. Med Chem Res. doi:10.1007/s00044-010-9502-3 (in press)
  32. Mahiwal K, Kumar P, Narasimhan B (2011) Synthesis, antimicrobial evaluation, ot-QSAR and mt-QSAR studies of 2-amino benzoic acid derivatives. Med Chem Res. doi:10.1007/s00044-010-9537-5 (in press)
  33. Marzio WD, Saenz ME (2004) Quantitative structure–activity relationship for aromatic hydrocarbons on freshwater fish. Ecotoxicol Environ Saf 59:256–262PubMedCrossRefGoogle Scholar
  34. Metwally KA, Abdel-Aziz LM, Lashine EM, Husseiny MI, Badawy RH (2006) Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: synthesis and preliminary evaluation as antimicrobial agents. Bioorgan Med Chem 14:8675–8682CrossRefGoogle Scholar
  35. Mohanty S, Patel DK, Pati SS, Mishra SK (2006) Adjuvant therapy in cerebral malaria. Indian J Med Res 124:245–260PubMedGoogle Scholar
  36. Narang R, Narasimhan B, Sharma S, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011a) Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med Chem Res. doi:10.1007/s00044-011-9664-7 (in press)
  37. Narang R, Narasimhan B, Sharma S, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011b) Nicotinic acid benzylidene/phenyl-ethylidene hydrazides: synthesis and antimicrobial evaluation and QSAR studies. Lett Drug Des Discov 8:733–749CrossRefGoogle Scholar
  38. Narasimhan B, Judge V, Narang R, Ohlan S, Ohlan R (2007) Quantitative structure–activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives. Bioorg Med Chem Lett 17:5836–5845PubMedCrossRefGoogle Scholar
  39. Perveen S, Fatima N, Khan KM, Khan A, Ali M, Choudhary MI (2010) Synthesis of carbamate derivatives of biological interest. J Chem Soc Pak 32(3):338–343Google Scholar
  40. Pharmacopoeia of India (2007) Controller of Publications, Ministry of Health Department, Govt. of India, New Delhi, vol. I: 37Google Scholar
  41. Rajasekaran A (2007) Synthesis, anti-nociceptive, anti-inflammatory and anti-epileptic evaluation of some novel indeno[1,2-b]quinoxalin-11-ylidenamines. Iranian J Pharm Sci 3(4):251–262Google Scholar
  42. Rajasekaran A, Rajamanickram V, Darlinquine S (2011) Synthesis, anti-inflammatory and analgesic evaluation of thioxoquinazolinone derivatives. Yakugaku Zasshi 131(7):1079–1084PubMedCrossRefGoogle Scholar
  43. Randic M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615CrossRefGoogle Scholar
  44. Randic M (1993) Comparative regression analysis: regression based on a single descriptor. Croat Chem Acta 66:289–312Google Scholar
  45. Ray K, Bala M, Gupta SM, Khunger N, Puri P, Muralidhar S, Kumar J (2006) Changing trends in sexually transmitted infections at a regional STD centre in north India. Indian J Med Res 124:559–568PubMedGoogle Scholar
  46. Rodriguez-Arguelles MC, Lopez-Silva EC, Sanmartin J, Pelagatti P, Zani F (2005) Copper complexes of imidazole-2-, pyrrole-2- and indol-3-carbaldehyde thiosemicarbazones: inhibitory activity against fungi and bacteria. J Inorg Biochem 99:2231–2239PubMedCrossRefGoogle Scholar
  47. Rosu T, Negoiu M, Pasculescu S, Pahontu E, Poirier D, Gulea A (2010) Metal-based biologically active agents: synthesis, characterization, antibacterial and antileukemia activity evaluation of Cu(II), V(IV) and Ni(II) complexes with antipyrine-derived compounds. Eur J Med Chem 45:774–789PubMedCrossRefGoogle Scholar
  48. Sharma NC, Mandal PK, Dhillon R, Jain M (2007) Changing profile of Vibrio cholerae 01, 0139 in Delhi and periphery (2003–2005). Indian J Med Res 125:633–640PubMedGoogle Scholar
  49. Singhal S, Purnapatre KP, Kalia V, Dube S, Nair D, Deb M, Agarwal P, Gupta S (2007) Ciprofloxacin-resistant Neisseria meningitidis, Delhi, India. Emerg Infect Dis 13:1614–1616PubMedCrossRefGoogle Scholar
  50. SPSS for Windows (1999) version 10.05, SPSS Inc., BangaloreGoogle Scholar
  51. TSAR 3D Version 3.3 (2000) Oxford Molecular Limited, OxfordGoogle Scholar
  52. Wiener HJ (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rajesh Kumar
    • 1
  • Pradeep Kumar
    • 1
  • Mahesh Kumar
    • 1
  • Balasubramanian Narasimhan
    • 1
    Email author
  1. 1.Faculty of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations