Medicinal Chemistry Research

, Volume 21, Issue 11, pp 3681–3686 | Cite as

Development of QSAR model for prediction of fold selectivity of phenyl benzoxazole as estrogen receptor inhibitors

  • Laxman M. PrajapatiEmail author
  • Vijay K. Parmar
  • Manish J. Patel
  • Jimish R. Patel
Original Research


QSAR model development of 37 phenyl benzoxazole was carried out to predict the fold selectivity for estrogen receptor. The ratio of IC50 for estrogen receptor-α and estrogen receptor-β (fold selectivity) was taken as biological activity. Physicochemical parameters were calculated using Dragon software, version 1.11. Sequential multiple linear regression analysis was carried out to derive QSAR models, which were further evaluated for statistical significance and predictive power by internal and external validation. The best quantitative structure activity relationship model was selected having a correlation coefficient (R 2) of 0.948, cross-validated correlation coefficient (Q 2) of 0.921, and R pred 2 of 0.853. The predictive ability of the selected model was also confirmed by leave one-out cross-validation. The QSAR model indicates that the descriptors (H1p, R5u, RTe) play an important role in estrogen receptor-β binding. The information generated from this study may be useful in the design of more potent substituted phenyl benzoxazole derivatives as estrogen receptor ligands.


QSAR Phenyl benzoxazole Estrogen receptor Sequential linear regression Fold selectivity GETAWAY descriptors 


  1. Babiker FA, De Windt LJ, van Eickels M, Grohe C, Meyer R, Doevendans PA (2002) Estrogenic hormone action in the heart: regulatory network and function. Cardiovasc Res 5:709–719CrossRefGoogle Scholar
  2. Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692PubMedCrossRefGoogle Scholar
  3. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138:4613–4621PubMedCrossRefGoogle Scholar
  4. CS ChemOffice (2004) Version 8.0, Cambridge Soft Corporation, Software Publishers Association, Washington, DCGoogle Scholar
  5. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (2006) International union of pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 4:773–781CrossRefGoogle Scholar
  6. Gupta AK, Arockia BM, Kaskhedikar SG (2004) VALSTAT: validation program for quantitative structure activity relationship studies. Indian J Pharm Sci 66:396–402Google Scholar
  7. Hess RA (2003) Estrogen in the adult male reproductive tract: a review. Reprod Biol Endocrinol 1:52PubMedCrossRefGoogle Scholar
  8. Jun Sun, Baudry J, Katzenellenbogen JA, Katzenellenbogen BS (2003) Molecular basis for the subtype discrimination of the estrogen receptor-β-selective ligand. Diarylpropionitrile. Mol Endocrinol 17:247–258CrossRefGoogle Scholar
  9. Korach KS, Sarver P, Chae K, McLachlan JA, McKinney JD (1988) Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: conformationally restricted structural probes. Mol Pharmacol 33:120–126PubMedGoogle Scholar
  10. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252–4263PubMedCrossRefGoogle Scholar
  11. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19:1159–1951CrossRefGoogle Scholar
  12. Malamas MS, Manas ES, McDevitt RE, Gunawan I, Xu XB, Collini MD (2004) Design and synthesis of aryl diphenolic azoles as potent and selective estrogen receptor-β ligands. J Med Chem 47:5021–5040PubMedCrossRefGoogle Scholar
  13. Meyers MJ, Sun J, Carlson KE, Katzenellenbogen BS, Katzenellenbogen JA (1999) Estrogen receptor subtype-selective ligands: asymmetric synthesis and biological evaluation of cis- and trans-5,11-dialkyl-5,6,11,12-tetrahydrochrysenes. J Med Chem 42:2456–2468PubMedCrossRefGoogle Scholar
  14. Meyers MJ, Sun J, Carlson KE, Marriner GA, Katzenellenbogen BS, Katzenellenbogen JA (2001) Estrogen receptor-β potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem 44:4230–4251PubMedCrossRefGoogle Scholar
  15. Miller CP, Collini MD, Harris HA (2003) Constrained phytoestrogens and analogues as ERβ selective ligands. Bioorg Med Chem Lett 13:2399–2403PubMedCrossRefGoogle Scholar
  16. Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2 metrics for validation of QSPR models. Chemom Intell Lab Syst 107:194–205CrossRefGoogle Scholar
  17. Schopfer U, Schoeffter P, Bischoff SF, Nozulak J, Feuerbach D, Floersheim P (2002) Toward selective ERβ agonists for central nervous system disorders: synthesis and characterization of aryl benzthiophenes. J Med Chem 45:1399–1401PubMedCrossRefGoogle Scholar
  18. Stephen C, Peterangel O, Paul G, Seybol D (2004) Synergistic interactions among QSAR descriptors. Int J Quantum Chem 96:1–9CrossRefGoogle Scholar
  19. Todeschini R, Consonni V (2001) Dragon software (version 1.11). Milano Chemometrics and QSAR Group, MilanoGoogle Scholar
  20. Yaghmaie F, Saeed O, Garan SA, Freitag W, Timiras PS, Sternberg H (2005) Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice. Neuro Endocrinol Lett 26:197–203PubMedGoogle Scholar
  21. Yang W, Wang Y, Ma Z, Golla R, Stouch T, Seethala R, Johnson S, Zhou R, Güngör T, Feyen JH, Dickson JK Jr (2004) Synthesis and structure-activity relationship of 3-arylbenzoxazines as selective estrogen receptor beta agonists. Bioorg Med Chem Lett 14:2327–2330PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Laxman M. Prajapati
    • 1
    Email author
  • Vijay K. Parmar
    • 2
  • Manish J. Patel
    • 3
  • Jimish R. Patel
    • 1
  1. 1.Department of Pharmaceutical ChemistryShri B M Shah College of Pharmaceutical Education and ResearchModasaIndia
  2. 2.Department of Pharmaceutical SciencesSardar Patel UniversityVallabh VidyanagarIndia
  3. 3.Department of Pharmaceutical Chemistry, S.K. Patel College of Pharmaceutical Education & ResearchGanpat UniversityMehsanaIndia

Personalised recommendations