Advertisement

Medicinal Chemistry Research

, Volume 21, Issue 11, pp 3615–3619 | Cite as

1-(7-Chloroquinolin-4-yl)-2-[(1H-pyrrol-2-yl)methylene]hydrazine: a potent compound against cancer

  • Raquel Carvalho Montenegro
  • Letícia Veras Lotufo
  • Manoel Odorico de Moraes
  • Cláudia do Ó. Pessoa
  • Felipe Augusto Rocha Rodrigues
  • Marcelle de Lima Ferreira Bispo
  • Camila Cataldi de Alcantara
  • Carlos Roland Kaiser
  • Marcus Vinícius Nora de Souza
Original Research

Abstract

Heteroaromatic derivatives (3af) have been synthesized and evaluated for their activity against four cancer cell lines. Among the studied compounds, 1-(7-Chloroquinolin-4-yl)-2-[(1H-pyrrol-2-yl)methylene]hydrazine (3e) exhibited an excellent cytotoxic activity against the referred lines, and especially on melanoma cells (MDAMB-435). In this case, compound 3e is four times more active than the standard substance Doxorubicin. Together with other results from our group, 7-chloro-4-quinolinylhydrazones derived from chloroquine could be considered a relevant finding toward the rational design of new leads for antitumor compounds.

Keywords

Antitumor activity Cancer Chloroquine Drugs Hydrazones Quinoline 

References

  1. Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [3H]thymidine incorporation assay. J Immunol Methods 170:211–224PubMedCrossRefGoogle Scholar
  2. Augustijns P, Geusens P, Verbeke N (1992) Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. Eur J Clin Pharmacol 42:429–433PubMedGoogle Scholar
  3. Chuandong F, Wang W, Zhao B, Zhang S, Miao J (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 14:3218–3222. doi: 10.1016/j.bmc.2005.12.035 CrossRefGoogle Scholar
  4. Fattorusso C, Campiani G, Kukreja G, Persico M, Butini S, Romano MP, Altarelli M, Ros S, Brindisi M, Savini L, Novellino E, Nacci V, Fattorusso E, Parapini S, Basilico N, Taramelli D, Yardley V, Croft S, Borriello M, Gemma S (2008) Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents. J Med Chem 51:1333–1343. doi: 10.1021/jm7012375 PubMedCrossRefGoogle Scholar
  5. Ferreira ML, Gonçalves RSB, Cardoso LNF, Kaiser CR, Candéa ALP, Henriques MGO, Lourenço MCS, Bezerra FAFM, Souza MVN (2010) Synthesis and antitubercular activity of heteroaromatic isonicotinoyl and 7-chloro-4-quinolinyl hydrazone derivatives. TheScientificWorldJOURNAL 10:1347–1355. doi: 10.1100/tsw.2010.124 CrossRefGoogle Scholar
  6. Foley M, Tilley L (1998) Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79:55–87. doi: 10.1016/S0163-7258(98)00012-6 PubMedCrossRefGoogle Scholar
  7. Font M, Monge A, Ruiz I, Heras B (1997) Structure-activity relationships in quinoline Reissert derivatives with HIV-1 reverse transcriptase inhibitory activity. Drug Des Discov 14:259–272PubMedGoogle Scholar
  8. Kaminsky D, Meltzer RI (1968) Quinolone antibacterial agents: Oxolinic acid and related compounds. J Med Chem 11:160–163. doi: 10.1021/jm00307a041 PubMedCrossRefGoogle Scholar
  9. Kim EL, Wüstenberg R, Rübsam A, Schmitz-Salue C, Warnecke G, Bücker EM, Pettkus N, Speidel D, Rohde V, Schulz-Schaeffer W, Deppert W, Giese A (2010) Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro Oncol 12:389–400PubMedCrossRefGoogle Scholar
  10. Krause W, Jordan A, Scholz R, Jimenez JLM (2005) Iodinated nitroimidazoles as radiosensitizers. Anticancer Res 25:2145–2151PubMedGoogle Scholar
  11. Montenegro RC, Lotufo LV, Moraes MO, Pessoa CO, Rodrigues FAR, Bispo MLF, Cardoso LNF, Kaiser CR, Souza MVN (2011) Synthesis and antitumoral evaluation of 7-chloro-4-quinolinylhydrazones derivatives. Med Chem 7:599–604PubMedCrossRefGoogle Scholar
  12. Musiol R, Jampilek J, Buchta V, Silva L, Niedbala H, Podeszwa B, Palka A, Majerz-Maniecka K, Oleksyn B, Polanski J (2006) Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem 14:3592–3598. doi: 10.1016/j.bmc.2006.01.016 PubMedCrossRefGoogle Scholar
  13. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A (2006) New insights into the antiviral effects of chloroquine. Lancet Infect Dis 6:67–69PubMedCrossRefGoogle Scholar
  14. Sharma P, Sharma JD (2001) In vitro hemolysis of human erythrocytes—by plant extracts with antiplasmodial activity. J Ethnopharmacol 74:239–243PubMedCrossRefGoogle Scholar
  15. Sloboda AE, Powell D, Poletto JF, Pickett WC, Gibbons JJJr, Bell DH, Oronsky AL, Kerwar SS (1991) Antiinflammatory and antiarthritic properties of a substituted quinoline carboxylic acid: CL 306, 293. J Rheumatol 18:855–860PubMedGoogle Scholar
  16. Warshakoon NC, Sheville J, Bhatt RT, Ji W, Mendez-Andino JL, Meyers KM, Kim N, Wos JA, Mitchell C, Paris JL, Pinney BB, Reizes O, Hu XE (2006) Design and synthesis of substituted quinolines as novel and selective melanin concentrating hormone antagonists as anti-obesity agents. Bioorg Med Chem Lett 16:5207–5211PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Raquel Carvalho Montenegro
    • 4
  • Letícia Veras Lotufo
    • 3
  • Manoel Odorico de Moraes
    • 3
  • Cláudia do Ó. Pessoa
    • 3
  • Felipe Augusto Rocha Rodrigues
    • 3
  • Marcelle de Lima Ferreira Bispo
    • 1
    • 2
  • Camila Cataldi de Alcantara
    • 1
  • Carlos Roland Kaiser
    • 2
  • Marcus Vinícius Nora de Souza
    • 1
  1. 1.Instituto de Tecnologia em Fármacos-Far ManguinhosFundação Oswaldo CruzRio de JaneiroBrazil
  2. 2.Instituto de Química, Departamento de Química OrgânicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratório de Oncologia ExperimentalUniversidade Federal do CearáFortalezaBrazil
  4. 4.Laboratório de Genética Humana e MédicaUniversidade Federal do ParáBelémBrazil

Personalised recommendations