Advertisement

Medicinal Chemistry Research

, Volume 21, Issue 10, pp 3214–3223 | Cite as

New thiazolidine-2,4-diones as antimicrobial and cytotoxic agent

  • Shankar G. AlegaonEmail author
  • Kallanagouda R. Alagawadi
Original Research

Abstract

New (Z)-5-substituted-2,4-thiazolidinediones (3am) were easily prepared by the condensation of thiazolidine-2,4-dione (1) with suitable aldehydes (2am) via microwave irradiation technique. The reaction between (Z)-5-substituted-2,4-thiazolidinediones and 4-(bromomethyl) benzoic acid, using potassium carbonate as base in refluxing acetone, followed by a workup in acidic medium provided 4-(((Z)-5-substituted-2,4-dioxothiazolidin-3-yl)methyl) benzoic acid derivatives (4am). The structures of the newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR spectral studies, and elemental analysis. All compounds were evaluated for their in vitro antimicrobial and cytotoxic activities. Antibacterial and antifungal results revealed that most of the compounds showed significant activity where as compounds 4c and 4g are found to be broad spectrum antibacterial and antifungal properties, the MIC values were observed in the range of 2–4 and 2–8 μg/ml, respectively. In MTT cytotoxicity studies, the compound 4g was found most potent. In HeLa, HT29, A549, and MCF-7 cells, the IC50 values were observed in the range of 30–36 μM.

Keywords

Thiazolidinedione Antibacterial activity Antifungal activity Cytotoxic activity Drug likeliness 

Notes

Acknowledgments

Authors are grateful to Dr. A. D. Taranalli, Principal, for providing necessary facilities. Authors are also grateful to NMR Research center, IISC, Bangalore, India, for providing the spectral data.

Supplementary material

44_2011_9876_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1327 kb)
44_2011_9876_MOESM2_ESM.docx (29 kb)
Supplementary material 2 (DOCX 29 kb)

References

  1. Alegaon SG, Alagawadi KR (2011) Synthesis, characterization and antimicrobial activity evaluation of new imidazo[2,1-b][1,3,4]thiadiazole derivatives. Eur J Chem 2:94–99CrossRefGoogle Scholar
  2. Aydemir N, Bilaloglu R (2003) Genotoxicity of two anticancer drugs, gemcitabine and topotecan, in mouse bone marrow in vivo. Mutat Res 537:43–51PubMedCrossRefGoogle Scholar
  3. Ayhan-Kilcigil G, Altanlar N (2000) Synthesis of 3-substituted phenacyl-5[2-phenyl-4H-4-oxo-1-benzopyran-6-ylmethyl]-thiazolidine-2,4-diones and evaluation of their antimicrobial activity. Arzneimittelforschung 50:154–157PubMedGoogle Scholar
  4. Betz MJ, Shapiro I, Fassnacht M, Hahner S, Reincke M, Beuschlein F (2005) Peroxisome proliferator-activated receptor-γ agonists suppress adrenocortical tumor cell proliferation and induce differentiation. J Clin Endocrinol Metab 90:3886–3896PubMedCrossRefGoogle Scholar
  5. Bozdag-Dundar O, Ozgen O, Mentese A, Altanlar N, Atli O, Kendi E, Ertan R (2007) Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2,4-dione derivatives. Bioorg Med Chem 15:6012–6017PubMedCrossRefGoogle Scholar
  6. Bruno G, Costantino L, Curinga C, Maccari R, Monforte F, Nicolo F, Ottana R, Vigorita MG (2002) Synthesis and aldose reductase inhibitory activity of 5-arylidine-2,4-thiazolidinediones. Bioorg Med Chem 10:1077–1084PubMedCrossRefGoogle Scholar
  7. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area (PSA) as a sum of fragment-based contributions and its application to the predication of drug transport properties. J Med Chem 43:3714–3717 (http://www.molinspiration.com/services)Google Scholar
  8. Eweis M, Elkholy SS, Elsabee MZ (2006) Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int J Biol Macromol 38:1–8PubMedCrossRefGoogle Scholar
  9. Galli A, Ceni E, Crabb DW, Mello T, Salzano R, Grappone C, Milani S, Surrenti E, Surrenti C, Casini A (2004) Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARγ independent mechanisms. Gut 53:1688–1697PubMedCrossRefGoogle Scholar
  10. Han SW, Roman J (2006) Rosiglitazone suppresses human lung carcinoma cell growth through PPARγ-dependent and PPAR-γ-independent signal pathways. Mol Cancer Ther 5:430–437PubMedCrossRefGoogle Scholar
  11. Heerding DA, Christmann LT, Clark TJ, Holmes DJ, Rittenhouse SF, Takata DT, Venslavsky JW (2003) New benzylidenethiazolidinedione as antibacterial agents. Bioorg Med Chem Lett 13:3771–3773PubMedCrossRefGoogle Scholar
  12. Houseknecht KH, Cole BM, Steele PJ (2002) Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands a review. Domest Anim Endocrinol 22:1–23PubMedCrossRefGoogle Scholar
  13. Irwin JJ, Shoichet BK (2005) Zinc-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182PubMedCrossRefGoogle Scholar
  14. Jensen BF, Refsgaard HHF, Broc R, Brockhoff PB (2005) Classification of membrane permeability of drug candidates: a method of investigation. QSAR Comb Sci 24:449–457CrossRefGoogle Scholar
  15. Kaminskyy D, Zimenkovsky B, Lesyk R (2009) Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acid derivatives. Eur J Med Chem 44:3627–3636PubMedCrossRefGoogle Scholar
  16. Kitamura S, Miyazaki Y, Shinomura Y, Kondo S, Kanayama S, Matsuzawa Y (1999) Peroxisome proliferator-activated receptor Induces growth arrest and differentiation markers of human colon cancer cells. Jpn J Cancer Res (Gann) 90:75–80CrossRefGoogle Scholar
  17. Li Q, Wu J, Zheng H, Liu K, Eblen ST, Grant S, Zhang S (2010) Discovery of 3-(2-aminoethyl)-5-(3-phenyl-propylidine)-thiazolidine-2,4-dione as a dual inhibitor of the Ref/MEK/ERK and the P13/Akt signalling pathways. Bioorg Med Chem Lett 20:4526–4530PubMedCrossRefGoogle Scholar
  18. Mentese A, Ceylan-Unlusoy M, Bozdag-Dundar O, Altanlar N, Ertan R (2009) Synthesis and antimicrobial activity of some novel thiazolidine-2,4-dione derivatives. Arzneimittelforschung 59:659–665PubMedGoogle Scholar
  19. Mohsen A, Omer ME, Salama HM, Eshba NH (1985) Novel thiazolidine-2,4-dione-4-thiosemicarbazone and 4-[(3,4-diaryl-3H-thiazole-2yl) azo] thiazolidin-2-one derivatives: synthesis and evaluation for antimicrobial and anticancer properties. Farmaco Sci 40:49–57PubMedGoogle Scholar
  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  21. National Committee for Clinical Laboratory Standards (NCCLS) guidelines (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 7th ed. Approved Standard document M-7: A5. Villanova, PAGoogle Scholar
  22. Ottana R, Maccari R, Barreca ML, Bruno G, Rotondo A, Rossi A, Chiricosta G, Paola RD, Sautebin L, Cuzzocrea S, Vigorita MG (2005) 5-Arylidine-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents. Bioorg Med Chem 13:4243–4252PubMedCrossRefGoogle Scholar
  23. Pallas 3.7.1.2 (2010) ADME-Tox software, CompuDrug International Inc. USAGoogle Scholar
  24. Patil V, Tilekar K, Mehendale-Munj S, Mohan R, Ramma CS (2010) Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur J Med Chem 45:4539–4544PubMedCrossRefGoogle Scholar
  25. Prashanth Kumar BR, Karvekar MD, Adhikary L, Nanjan NJ, Suresh B (2006) Microwave induced synthesis of the thiazolidine-2,4-dione motif and the efficient solvent free-solid phase parallel syntheses of 5-benzylidene-thiazolidine-2,4-dione and 5-benzylidene-2-thioxo-thiazolidine-4-one compounds. J Heterocycl Chem 43:897–903CrossRefGoogle Scholar
  26. Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW, Chen CS (2005) Thiazolidinediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xl/Bcl-2 function independently of PPARγ. Cancer Res 65:1561–1569PubMedCrossRefGoogle Scholar
  27. Sung B, Park S, Yu BP, Chung HY (2004) Modulation of PPAR in aging, inflammation, and calorie restriction. J Gerontol A 59:997–1006CrossRefGoogle Scholar
  28. Takashima T, Fujiwara Y, Higuchi K, Arakawa T, Yano Y, Hasuma T, Otani S (2001) PPAR-γ ligand inhibit growth of human oesophageal adenocarcinoma cells through induction of apoptosis, cell cycle arrest and reduction of ornithine decarboxylase activity. Int J Oncol 19:465–475PubMedGoogle Scholar
  29. Tuncbilek M, Altanlar N (2006) Synthesis of new 3-(substituted phenacyl)-5-[3-(4H-4-oxo-1-benzopyran-2-yl)-benzylidene]-2,4-thiazolidinediones and their antimicrobial activity. Arch Pharm Chem Life Sci 339:213–216CrossRefGoogle Scholar
  30. Turturro F, Friday E, Fowler R, Surie D, Welbourne T (2004) Troglitazone acts on cellular pH and DNA synthesis through a peroxisome proliferator-activated receptor-γ independent mechanism in breast cancer-derived cell lines. Clin Cancer Res 10:7022–7030PubMedCrossRefGoogle Scholar
  31. Veber DF, Johnson RS, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623PubMedCrossRefGoogle Scholar
  32. Wei S, Yang J, Lee SL, Kulp SK, Chen CS (2009) PPARγ-independent antitumor effect of thiazolidinediones. Cancer Lett 276:119–124PubMedCrossRefGoogle Scholar
  33. Yoshizumi T, Ohta T, Ninomiya I, Terada I, Fushida S, Fujimura T, Nishimura GI, Shimizu K, Yi S, Miwa K (2004) Thizolidinedione, a peroxisome proliferator-activated receptor-γ ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int J Oncol 25:631–639PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shankar G. Alegaon
    • 1
    Email author
  • Kallanagouda R. Alagawadi
    • 1
  1. 1.Department of Pharmaceutical ChemistryKLE University’s College of PharmacyBelgaumIndia

Personalised recommendations