Medicinal Chemistry Research

, Volume 21, Issue 8, pp 1977–1983 | Cite as

Synthesis of 1-(4-((E)-3-arylacryloyl) phenyl)-3,4-dibromo-1H-pyrrole-2,5-diones and screening for anti-Candida and antituberculosis activity

  • J. R. Patel
  • B. Z. DholakiyaEmail author
Original Research


A series of eleven 1-(4-((E)-3-arylacryloyl) phenyl)-3,4 dibromo-1H-pyrrole-2,5-diones (4′-aminochalcone-based dibromomaleimides) were synthesized using maleic anhydride and p-aminoacetophenone as starting material. Furthermore, there has been some additional work investigating the effect of these derivatives on biological activity. They were characterized using FTIR, 1H NMR, 13C NMR, ESI mass spectroscopy, and elemental analysis. The compounds show anti-Candida & antituberculosis activity.


1-(4-((E)-3-arylacryloyl) phenyl)-3,4 dibromo-1H-pyrrole-2,5-diones Anti-Candida Antituberculosis 



The author wish to thank the Department of Applied Chemistry, SVNIT, Surat, for providing laboratory facilities and D. P. Rajani, Microcare Laboratory, Surat, for antimicrobial activity determinations. Analytical facilities providing by the Centre of Excellence, Vapi, Oxygen Healthcare Research Lab, Ahmedabad, and Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India, are gratefully acknowledged.


  1. Aridoss G, Amirthaganesan S, Kumar NA, Kin JT, Lim KT, Kabilan S, Jeong XT (2008) A facile synthesis, antibacterial, and antitubercular studies of some piperidin-4-one and tetrahydropyridine derivatives. Bioorg Med Chem Lett 18:6542–6548PubMedCrossRefGoogle Scholar
  2. Bag S, Ramar S, Degani MS (2009) Synthesis and biological evaluation of a,b-unsaturated ketone as potential antifungal agents. Med Chem Res 18:309–316CrossRefGoogle Scholar
  3. Beheshtia YS, Khorshidi M, Heravi MM, Baghernejad B (2010) DABCO as an efficient catalyst for the synthesis of 3-cyano-2(1H)-pyridinones and their 2-imino analogues. Eur J Chem 1:54–60CrossRefGoogle Scholar
  4. Castagnolo D, Logu AD, Radi M, Bechi B, Manetti F, Magnani M, Supino S, Meleddu R, Chisu L, Botta M (2008) Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem 16:8587–8591PubMedCrossRefGoogle Scholar
  5. Cheng C-F, Lai Z-C, Lee Y-J (2008) Total synthesis of (±)-camphorataimides and (±)-himanimides by NaBH4/Ni(OAc)2 or Zn/AcOH stereoselective reduction. Tetrahedron 64:4347–4353CrossRefGoogle Scholar
  6. Dimmock JR, Jha A, Zello GA, Allen TM, Santos CL, Balzarini J, Clercq ED, Manavathu EK, Stables JP (2003) Cytotoxic 4′-aminochalcones and related compounds. Pharmazie 58:227PubMedGoogle Scholar
  7. Dubernet M, Caubert V, Guillard J, Viaud-Massuard M-C (2005) Synthesis of substituted bis(heteroaryl)maleimides. Tetrahedron 61:4585–4593CrossRefGoogle Scholar
  8. Guzel O, Terzioglu N, Çapan G, Salman A (2006) Synthesis and biological evaluation of new 5-methyl-N-(3-oxo-1-thia-4-azaspiro[4.5]-dec-4-yl)-3-phenyl-1H-indole-2-carboxamide derivatives. Arkivoc 12:98–110Google Scholar
  9. Jha A, Mukherjee C, Rolle AJ, Clercq ED, Balzarini J, Stables JP (2007) Cytostatic activity of novel 4′-aminochalcone-based imides. Bioorg Med Chem Lett 17:4545–4550PubMedCrossRefGoogle Scholar
  10. Judge V, Narasimhan B, Ahuja M, Sriram, D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011) Isonicotinic acid hydrazide derivatives: synthesis, antimicrobial activity, and QSAR studies. Med Chem Res. doi: 10.1007/s00044-011-9662-9
  11. Kasimogullari BO, Cesur Z (2004) Fused heterocycles: synthesis of some new imidazo [1,2-a] pyridine derivatives. Molecules 9:894–901PubMedCrossRefGoogle Scholar
  12. Lee HS, Yu JS, Lee CK (2009) Use of correlation of 1H and 13C chemical shifts of N-arylsuccinanilic acids, N-arylsuccinimides, N-arylmaleanilic acids, and N-arylmaleimides with the Hammett substituent constants for the studies of electronic effects. Bull Korean Chem Soc 30:2351–2354CrossRefGoogle Scholar
  13. Nielsen SF, Boesen T, Larsenm M, Schønning C, Kromann H (2004) Antibacterial chalconesbioisosteric replacement of the 4′-hydroxy group. Bioorg Med Chem 12:3047–3054PubMedCrossRefGoogle Scholar
  14. Ortega MA, Sainz Y, Montoya ME, De Cerain AL, Monge A (1999) Synthesis and antituberculosis activity of new 2-quinoxalinecarbonitrile 1,4-di-N-oxides. Pharmazie 54:24–25PubMedGoogle Scholar
  15. Patel JR, Dholakiya BZ (2011) Synthesis, characterization and antimicrobial activity of 4′-aminochalcone-based dibromomaleimides. Der Pharm Chem 3:458–466Google Scholar
  16. Patil CB, Mahajan SK, Katti SA (2009) Chalcone—a versatile molecule. J Pharm Sci Res 1:11–22Google Scholar
  17. Perrin DD, Armarego WLF (1988) Purification of laboratory chemicals. Pergamon Press, New YorkGoogle Scholar
  18. Rani M, Parthiban P, Ramachandran R, Kabilan S (2011) Design and synthesis of novel piperazine unit condensed 2,6-diarylpiperidin-4-one derivatives as antituberculosis and antimicrobial agents. Med Chem Res. doi: 10.1007/s00044-011-9573-9
  19. Rattan A (2000) Antimicrobials in laboratory medicine. BI Churchill Livingstone, New Delhi, p. 85Google Scholar
  20. Silverstein RM, Webster FX (1997) Spectrometric identification of organic compounds, 6th edn. John Wiley & Sons, New York, pp 79–223Google Scholar
  21. Stewart SG, Polomska ME, Lim RW (2007) A concise synthesis of maleic anhydride and maleimide natural products found in Antrodia camphorata. Tetrahedron Lett 48:2241–2244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Applied ChemistryS.V. National Institute of TechnologySuratIndia

Personalised recommendations