Medicinal Chemistry Research

, Volume 20, Issue 9, pp 1704–1712 | Cite as

Homology modeling of human CCR2 receptor

  • Rajesh Singh
  • M. Elizabeth Sobhia
Original Research


Homology model of CCR2 receptor was built on the basis of the crystal structure of human beta-2 adrenoceptor (PDB ID-2RH1). The model showed 99.3% residues in the core and allowed regions of the Ramachandran plot and there was no residue present in the disallowed regions. Prosa2003 program was used to assess the model and it displayed good native protein folding. The model also provided good root mean square deviation (RMSD) value and alignment score with the template, human β2-adrenoceptor. The binding site is found within the transmembrane (TM) region and is sufficiently large enough for docking the known CCR2 ligands. The docking results validated the homology model to meet various criteria that are necessary in molecular modeling studies.


Homology modeling Docking Chemokine receptor CCR2 MCP-1 CC-chemokine receptor 2 Monocyte chemoattractant protein-1 



The authors thank the Council of Scientific and Industrial Research (CSIR) and the Department of Science and Technology (DST) for financial support.


  1. Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, MacIntyre DE, Forrest MJ (2003) Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Sci Signal 100(13):7947–7952Google Scholar
  2. Berkhout TA, Blaney FE, Bridges AM, Cooper DG, Forbes IT, Gribble AD, Groot PH, Hardy A, Ife RJ, Kaur R (2003) CCR2: characterization of the antagonist binding site from a combined receptor modeling/mutagenesis approach. J Med Chem 46(19):4070–4086PubMedCrossRefGoogle Scholar
  3. Carter PH, Tebben AJ (2009) The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol 461:249–279PubMedCrossRefGoogle Scholar
  4. Chacón MR, Fernández-Real JM, Richart C, Megía A, Gómez JM, Miranda M, Caubet E, Pastor R, Masdevall C, Vilarrasa N (2007) Monocyte chemoattractant protein-1 in obesity and type 2 diabetes. Insulin sensitivity study. Obesity 15(3):664–672PubMedCrossRefGoogle Scholar
  5. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. New Engl J Med 354(6):610–621PubMedCrossRefGoogle Scholar
  6. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK (2007) High-resolution crystal structure of an engineered human 2-adrenergic G protein coupled receptor. Science 318(5854):1258–1265PubMedCrossRefGoogle Scholar
  7. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749PubMedCrossRefGoogle Scholar
  8. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115PubMedCrossRefGoogle Scholar
  9. Glide, version 5.5. Schrödinger, LLC, New York (2009).
  10. Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259(3):393–421PubMedCrossRefGoogle Scholar
  11. Gu L, Tseng SC, Rollins BJ (1999) Monocyte chemoattractant protein-1. Chemokines 72:7–29CrossRefGoogle Scholar
  12. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217PubMedCrossRefGoogle Scholar
  13. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486PubMedCrossRefGoogle Scholar
  14. Lumeng CN, DeYoung SM, Bodzin JL, Saltiel AR (2007) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56(1):16–23PubMedCrossRefGoogle Scholar
  15. Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. New Engl J Med 338(7):436–445PubMedCrossRefGoogle Scholar
  16. Mirzadegan T, Diehl F, Ebi B, Bhakta S, Polsky I, McCarley D, Mulkins M, Weatherhead GS, Lapierre JM, Dankwardt J (2000) Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists. J Biol Chem 275(33):25562–25571PubMedCrossRefGoogle Scholar
  17. MOE (Molecular Operating Environment), version 2006.08. Chemical Computing Group Inc., Montreal, Canada (2006).
  18. Newton RC, Vaddi K (1997) Biological responses to C-C chemokines. Methods Enzymol 287:174–186PubMedCrossRefGoogle Scholar
  19. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745PubMedCrossRefGoogle Scholar
  20. Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277(5332):1676–1681PubMedCrossRefGoogle Scholar
  21. Rajagopalan L, Rajarathnam K (2006) Structural basis of chemokine receptor function—a model for binding affinity and ligand selectivity. Biosci Rep 26(5):325–339PubMedCrossRefGoogle Scholar
  22. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928PubMedCrossRefGoogle Scholar
  23. Šali A, Webb B, Madhusudhan MS, Shen MY, Mart-Renom MA, Eswar N, Alber F, Topf M, Oliva B, Fiser A (2009)
  24. Schertler GFX, Villa C, Henderson R (1993) Projection structure of rhodopsin. Nature 362(6422):770–772PubMedCrossRefGoogle Scholar
  25. Schrödinger Suite, LLC, New York (2009).
  26. Shi XF, Liu S, Xiangyu J, Zhang Y, Huang J, Liu CQ (2002) Structural analysis of human CCR2b and primate CCR2b by molecular modeling and molecular dynamics simulation. J Mol Model 8(7):217–222PubMedCrossRefGoogle Scholar
  27. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Genet 17:355–362PubMedCrossRefGoogle Scholar
  28. Unger VM, Hargrave PA, Baldwin JM, Schertler GFX (1997) Arrangement of rhodopsin transmembrane a-helices. Nature 389(6647):203–205PubMedCrossRefGoogle Scholar
  29. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AGW, Tate CG, Schertler GFX (2008) Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454:486–491PubMedCrossRefGoogle Scholar
  30. Wong LM, Myers SJ, Tsou CL, Gosling J, Arai H, Charo IF (1997) Organization and differential expression of the human monocyte chemoattractant protein 1 receptor gene. Evidence for the role of the carboxyl-terminal tail in receptor trafficking. J Biol Chem 272(2):1038–1045PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PharmacoinformaticsNational Institute of Pharmaceutical Education and Research (NIPER)MohaliIndia

Personalised recommendations