Medicinal Chemistry Research

, Volume 20, Issue 5, pp 637–641 | Cite as

Chemical characterization and synergistic antibiotic activity of volatile compounds from the essential oil of Vanillosmopsis arborea

  • N. K. A. Santos
  • H. D. M. Coutinho
  • G. S. B. Viana
  • Fabíola F. G. Rodrigues
  • José G. M. Costa
Original Research


Essential oils have been traditionally used for respiratory tract infections, and are used nowadays as ethnic medicines for colds. The objective of this work was to study the antibiotic-modifying activity of the essential oil from the leaves of Vanillosmopsis arborea Baker using gaseous contact. Stems of Vanillosmopsis arborea Baker (Asteracea) were subjected to hydrodistillation, and the essential oil extracted was evaluated for antibacterial and antibiotic-modifying activity by gaseous contact. The volatile components of the oil enhanced the sensitivity of Staphylococcus aureus ATCC 12692 and Proteus vulgaris ATCC 13315 to two or more antibiotics assayed. The activity of the antibiotic gentamicin was increased only in S. aureus. The activity of tetracycline and tobramycin was enhanced against both strains. The essential oil of Vanillosmopsis arborea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens.


Vanillosmopsis arborea Asteraceae Antibiotic-modifying activity Gaseous contact Essential oil Bisabolol Staphylococcus aureus Proteus vulgaris 


  1. Adams RP (2005) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, 4th edn. Allured Publishing Corporation, Carol Stream, ILGoogle Scholar
  2. Alencar JW, Craveiro AA, Matos FJA (1984) Kovats indexes as a preselection routine in mass-spectra library searches of volatiles. J Nat Prod 47:890–892CrossRefGoogle Scholar
  3. Alencar JW, Craveiro AA, Matos FJA, Machado MIL (1990) Kovats indices simulation in essential oil analysis. Quim Nova 13:282–284Google Scholar
  4. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253PubMedCrossRefGoogle Scholar
  5. Cavalieri E, Mariotto S, Fabrizi C, Prati AC, Gottardo R, Leone S, Berra LV, Lauro GM, Ciampa AR, Suzuki AH (2004) α-bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Comm 315:589–594PubMedCrossRefGoogle Scholar
  6. Coutinho HDM, Costa JGM, Falcão-Silva VS, Lima EO, Siqueira-Junior JP (2008) Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 54:328–330PubMedCrossRefGoogle Scholar
  7. Coutinho HD, Costa JGM, Lima EO, Falcão-Silva VS, Siqueira-Júnior JP (2009a) Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin-resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complement Altern Med 9:13PubMedCrossRefGoogle Scholar
  8. Coutinho HD, Costa JGM, Lima EO, Falcão-Silva VS, Siqueira-Júnior JP (2009b) Potentiating effect of Mentha arvensis and chlorpromazine in the resistance to aminoglycosides of methicillin-resistant Staphylococcus aureus. In Vivo 23:287–290PubMedGoogle Scholar
  9. Coutinho HD, Costa JG, Lima EO, Falcão-Silva VS, Siqueira-Júnior JP (2009c) In vitro interference of Hyptis martiusii Benth. & chlorpromazine against an aminoglycoside-resistant E. coli. Ind J Med Res 129:566–568Google Scholar
  10. Coutinho HD, Costa JG, Lima EO, Falcão-Silva VS, Siqueira-Júnior JP (2010) Increasing of the aminogycoside antibiotic activity against a multidrug resistant E. coli by Turnera ulmifolia L. and chlorpromazine. Biol Res Nurs 11:332–335PubMedCrossRefGoogle Scholar
  11. Edries AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323CrossRefGoogle Scholar
  12. Furtado RF, de Lima MGA, Neto MA, Bezerra JNS, Silva MG (2005) Larvicidal activity of essential oils against Aedes aegypti L. Neotrop Entomol 34:843–849CrossRefGoogle Scholar
  13. Gibbons S (2004) Anti-staphylococcal plant natural products. Nat Prod Rep 21:263–277PubMedCrossRefGoogle Scholar
  14. Gunics G, Farkas S, Motohashi N, Shah A, Harsukh G, Kawase M (2002) Interaction between 3,5-diacetyl-1,4-dihydropyridines and ampicillin, and erythromycin on different E. coli strains. Int J Antimicrob Agents 20:227–229PubMedCrossRefGoogle Scholar
  15. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 27:1–93PubMedCrossRefGoogle Scholar
  16. Helander IM, Alakomi H-L, Latva-kala K, Mattila Sandholm T, Pol I, Smid EJ, Gorris LGM, Von Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46:3590–3595CrossRefGoogle Scholar
  17. Hernandez-Ceruelos A, Madrigal-Bujaidar E, De Lacruz C (2002) Inhibitory effect of chamomile essential oil on the sister chromatid exchanges induced by daunorubicin and methyl methane sulfate in mouse bone marrow. Toxicol Lett 135:103–110PubMedCrossRefGoogle Scholar
  18. Inouye S, Takizawa T, Yamaguchi H (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother 47:565–573PubMedCrossRefGoogle Scholar
  19. Jakovlev V, Isaac O, Thiemer K, Kunde R (1979) Pharmacological investigations with compounds of chamomile ii. New investigations on the antiphlogistic effects of (−)-alpha-bisabolol and bisabolol oxides. Planta Med 35:125–140PubMedCrossRefGoogle Scholar
  20. Jedlickova Z, Mottl O, Sery V (1992) Antibacterial properties of the Vietnamese cajeput oil and ocimum oil in combination with antibacterial agents. J Hyg Epidemiol Microbiol Immunol 36:303–309PubMedGoogle Scholar
  21. Juven J, Kanner J, Schved F, Weisslowicz H (1994) Factors that interact with antimicrobial action of thyme essential oil and its active constituents. J Appl Bacteriol 76:626–631PubMedGoogle Scholar
  22. Leite GO, Penha AR, Fernandes CN, Souza HHF, Costa JGM, Campos AR (2009) Gastroprotective mechanism of Vanillosmopsis arborea bark essential oil. Fitoterapia 80:77–80CrossRefGoogle Scholar
  23. Lim TP, Tan TY, Lee W, Sasikala S, Tan TT, Hsu LY, Kwa AL (2009) In vitro activity of various combinations of antimicrobials against carbapenem-resistant Acinetobacter species in Singapore. J Antibiot (Tokyo) 62:675–679Google Scholar
  24. Matos FJA (1990) Plantas medicinais brasileiras: um desafio para nossos químicos orgânicos. Desafio 3:5–13Google Scholar
  25. Mbwambo ZH, Moshi MJ, Masimba PJ, Kapingu MC, Nondo RS (2007) Antimicrobial activity and brine shrimp toxicity of extracts of Terminalia brownii roots and stem. BMC Complement Altern Med 7:9PubMedCrossRefGoogle Scholar
  26. Menezes AMS, Almeida FRC, Rao VSN, Matos MEO (1990) Anti-inflammatory activity of the essential oil of Vanillosmopsis arborea. Fitoterapia 61:252–254Google Scholar
  27. Moleyar V, Narasinham P (1986) Antifungal activity of some essential oil components. Food Microbiol 3:331–336CrossRefGoogle Scholar
  28. Molnar J, Molnar A, Spengler G, Mandi Y (2004) Infectious plasmid resistance and efflux pump mediated resistance. Acta Microbiol Immunol Hung 51:333–349PubMedCrossRefGoogle Scholar
  29. Nguefack J, Budde B, Jakobsen M (2004) Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytometry. Lett Appl Microbiol 39:395–400PubMedCrossRefGoogle Scholar
  30. Nicolson K, Evans G, O′Toole PW (1999) Potentiation of methicillin activity against methicillin-resistant Staphylococcus aureus by diterpenes. FEMS Microbiol Lett 179:233–239PubMedCrossRefGoogle Scholar
  31. Rodrigues FFG, Costa JGM, Coutinho HDM (2009) Synergy effects of the antibiotics gentamicin and the essential oil of Croton zehntneri. Phytomedicine 16:1052–1055PubMedCrossRefGoogle Scholar
  32. Schmidt E, Jirovetz L, Buchbauer G, Denkova Z, Stoyanova A, Murgov I (2005) Antimicrobial testing and gas chromatographic analysis of aroma chemicals. J Essent Oil Bear Plants 8:99–106Google Scholar
  33. Stenhagen E, Abrahamson S, Mclafferty FW (1974) Registry of mass spectra data base. Government Printing Office, Washington, DCGoogle Scholar
  34. Tabak M, Scher K, Chikindas ML, Yaron S (2009) The synergistic activity of triclosan and ciprofloxacin on biofilms of Salmonella Typhimurium. FEMS Microbiol Lett 301:69–76PubMedCrossRefGoogle Scholar
  35. Villegas LF, Marcalo A, Martin J, Fernandez ID, Maldonado H, Vaisberg AJ, Hammond GB (2001) (+)-epi-alpha-bisabolol is the wound-healing principle of Peperonia galioides: investigation of the in vivo wound-healing activity of related terpenoids. J Nat Prod 64:1357–1359PubMedCrossRefGoogle Scholar
  36. Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110PubMedCrossRefGoogle Scholar
  37. Wendakoon C, Sakaguchi M (1995) Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J Food Prot 58:280–283Google Scholar
  38. Wolfart K, Spengler G, Kawase M, Motohashi N, Molnar J, Viveiros M (2006) Interaction between 3,5-diacetyl-1,4-dihydropyridines and ampicillin, and erythromycin on different E. coli strains. In Vivo 20:367–372PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • N. K. A. Santos
    • 1
  • H. D. M. Coutinho
    • 1
    • 4
  • G. S. B. Viana
    • 2
  • Fabíola F. G. Rodrigues
    • 3
  • José G. M. Costa
    • 3
  1. 1.Laboratório de Pesquisa em Produtos Naturais, Centro de Ciências Biológicas e da SaúdeUniversidade Regional do CaririCratoBrazil
  2. 2.Faculdade de Medicina de Juazeiro do NorteJuazeiro do NorteBrazil
  3. 3.Faculdade Leão SampaioJuazeiro do NorteBrazil
  4. 4.Departamento de Ciências BiológicasUniversidade Regional do Cariri (URCA)CratoBrazil

Personalised recommendations