Medicinal Chemistry Research

, Volume 20, Issue 3, pp 364–369 | Cite as

Synthesis and antiprotozoal activity of 1,2,3,4-tetrahydro-2-thioxopyrimidine analogs of combretastatin A-4

  • Dereje Desta
  • Robert Sjoholm
  • Lauren Lee
  • Megan Lee
  • Kristin Dittenhafer
  • Sarah Canche
  • Balaji Babu
  • Sameer Chavda
  • Christie Dewar
  • Stephanie Yanow
  • Aaron A. Best
  • Moses Lee
Original Research

Abstract

Eighteen 1,2,3,4-tetrahydro-2-thioxopyrimidine analogs (5aj, 6ae, and 7ac) of combretastatin A-4 were synthesized with the objective of discovering compounds capable of controlling the growth of Trypanosoma lewisii, Leishmania tarantole, Plasmodium falciparum, and Giardia lamblia. Even though the target compounds demonstrated differential cytotoxicity against mammalian cancer cells, with IC50 values ranging from 0.5 to >100 μM, the range of activity against Trypanosoma, Leishmania, and Plasmodium, and to a good extent for Giardia, was narrow. The IC50 values of “active” compounds against the parasites ranged from about 10 μΜ to slightly greater than 50 μM. Specifically, compounds 5a, 5g, 5h, 6c, 7a, and 7c were not cytotoxic against mammalian cancer cells (IC50 > 100 μM) but showed good activity against the parasites, except Giardia (e.g., compounds 6c and 7a), suggesting that these compounds may act in a similar mechanism in parasites. Compounds 5f and 6b were previously shown to promote microtubule depolymerization in mammalian cells.

Keywords

Combretastatin Microtubule Cytotoxicity Antiparasite Trypanosoma Leishmania Plasmodium Giardia 

Notes

Acknowledgments

The authors are grateful for the support received from the Howard Hughes Medical Institute, Conjura Pharmaceuticals, LLC, and Hope College.

References

  1. Al-Hajjar FH, Al-Farkh YA, Hamoud HS (1979) Synthesis and spectroscopic studies of the pyrimidine-2(1)thione derivatives. Can J Chem 57:2734–2742CrossRefGoogle Scholar
  2. Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC, Bhasin VK (2009) Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med Chem Res 18:407–420CrossRefGoogle Scholar
  3. Belotti D, Vergani V, Drudis T, Borsotti P, Pitelli MR, Viale G, Giavazzi R, Taraboletti G (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849PubMedGoogle Scholar
  4. Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 47:943–946PubMedGoogle Scholar
  5. De Souza W (2002) From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality. Kinetoplastid Biol Dis 1:1–21CrossRefGoogle Scholar
  6. Dickson J, Flores L, Stewart M, Holt HL Jr, LeBlanc R, Lee M (2006) Synthesis and cytotoxic properties of chalcones: an interactive and investigative undergraduate laboratory project at the interface of chemistry and biology. J Chem Edu 83:934–936CrossRefGoogle Scholar
  7. Dominguez JN, Charris JE, Lobo G, Gamboa de Dominguez N, Moreno MM, Riggione F, Sanchez E, Olsone J, Rosenthal PJ (2001) Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. Eur J Med Chem 36:555–560PubMedCrossRefGoogle Scholar
  8. Ducki S, Forrest R, Hadfield JA, Kendall A, Lawrence NJ, McGown AT, Rennison D (1998) Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg Med Chem Lett 8:1051–1056PubMedCrossRefGoogle Scholar
  9. Fadda AA, Badria FA, El-Attar KM (2009) Synthesis and evaluation of curcumin analogues. Med Chem Res. doi:  10.1007/s00044-009-9284-7 (Online First)
  10. Faubert G (2000) Immune response to Giardia duodenalis. Clin Microbiol Rev 13:35–54PubMedCrossRefGoogle Scholar
  11. Galbraith S, Maxwel R, Lodge M, Tozer G, Wilson J, Taylor N, Stirling J, Sena L, Padhani A, Rustin G (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842PubMedCrossRefGoogle Scholar
  12. Gardner TB, Hill DR (2001) Treatment of giardiasis. Clin Microbiol Rev 14:114–128PubMedCrossRefGoogle Scholar
  13. Gaukoger K, Hadfield JA, Hepworth LA, Lawrence NJ, McGown AT (2001) Novel syntheses of cis and trans isomers of combretastatin A-4. J Org Chem 66:8135–8138CrossRefGoogle Scholar
  14. Go M-L, Liu M, Wilairat P, Rosenthal PJ (2004) Antiplasmodial chalcones inhibit sorbitol-induced hemolysis of Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother 48:3241–3245PubMedCrossRefGoogle Scholar
  15. Hsieh HP, Liou JP, Lin YT, Mahindroo N, Chang JY, Yang YN, Chern SS, Tan UK, Chang CW, Chen TW, Lin CH, Chang YY, Wang CC (2003) Structure activity and crystallographic analysis of benzophenone derivatives the potential anticancer agents. Bioorg Med Chem Lett 13:101–105PubMedCrossRefGoogle Scholar
  16. Johnson M, Younglove B, Lee L, LeBlanc R, Holt H Jr, Hills P, Mackay H, Brown T, Mooberry SL, Lee M (2007) Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg Med Chem Lett 17:5897–5901PubMedCrossRefGoogle Scholar
  17. Jordan A, Hadfield JA, Lawrence NJ, McGown AT (1998) Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 18:259–296PubMedCrossRefGoogle Scholar
  18. Kong Y, Grembecka J, Edler MC, Hamel E, Mooberry SL, Sabat M, Rieger J, Brown ML (2005) Structure based discovery of a boronic acid bioisostere of combretastatin A-4. Chem Biol 12:1007–1014PubMedCrossRefGoogle Scholar
  19. Lee L, Davis R, Vanderham J, Hills P, Mackay H, Brown T, Mooberry SL, Lee M (2008) 1,2,3,4-Tetrahydro-2-thioxopyrimidine analogs of combretastatin-A4. Eur J Med Chem 43:2011–2015PubMedCrossRefGoogle Scholar
  20. Liu M, Wilairat P, Go ML (2001) Antimalarial alkoxylated and hydroxylated chalones: structure–activity relationship analysis. J Med Chem 44:4443–4452PubMedCrossRefGoogle Scholar
  21. Liu M, Wilairat P, Croft SL, Tan L-CA, Go ML (2003) Structure–activity relationships of antileishmanial and antimalarial chalcones. Bioorg Med Chem 11:2729–2738PubMedCrossRefGoogle Scholar
  22. Miller KD, Sweeney CJ, Sledge GW Jr (2001) Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19:1195–1206PubMedGoogle Scholar
  23. Morris JC, Drew ME, Klingbeil MM, Motyka SA, Saxowsky TT, Wang Z, Englund PT (2001) Replication of kinetoplast DNA: an update for the new millennium. Int J Parasitol 31:453–458PubMedCrossRefGoogle Scholar
  24. Narender T, Shweta TanvirK, Srinivasa Rao M, Srivastava K, Puri SK (2005) Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg Med Chem Lett 15:2453–2455PubMedCrossRefGoogle Scholar
  25. Ohsumi K, Nakagawa R, Fukuda Y, Hatanaka T, Morinaga Y, Nihei Y, Ohishi K, Suga Y, Akiyama Y, Tsuji T (1998) Novel combretastatin analogues effective against murine solid tumors: design and structure–activity relationships. J Med Chem 41:3022–3032PubMedCrossRefGoogle Scholar
  26. Olliaro P, Wells TN (2009) The global portfolio of new antimalarial medicines under development. Clin Pharmacol Ther 85:584–595PubMedCrossRefGoogle Scholar
  27. Pati HN, Holt HL Jr, LeBlanc R, Dickson J, Stewart M, Brown T, Lee M (2005) Synthesis and cytotoxic properties of nitro- and aminochalcones. Med Chem Res 14:19–25CrossRefGoogle Scholar
  28. Pettit GR, Singh B, Niven ML, Hamel E, Schimdt JM (1987) Isolation, structure, and synthesis of combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly derived from Combretum caffrum. J Nat Prod 50:119–131PubMedCrossRefGoogle Scholar
  29. Pettit GR, Singh SB, Boyd MR, Hamel E, Pettit RK, Schimdt JM, Hogan F (1995) Antineoplastic agents 291 isolation and synthesis of combretastatins A4, A-5 and A-6. J Med Chem 38:1666–1672PubMedCrossRefGoogle Scholar
  30. Ruprich J, Prout A, Dickson J, Younglove B, Nolan L, Baxi K, LeBlanc R, Forrest L, Hills P, Holt H, Mackay H, Brown T, Mooberry S, Lee M (2007) Design, synthesis, and biological testing of cyclohexenone derivatives of the combretastatins. Lett Drug Des Discov 4:144–148CrossRefGoogle Scholar
  31. Taraboletti G, Micheletti G, Rieppi M, Poli M, Turatto M, Rossi C, Borsotti P, Roccabianca P, Scanziani E, Nicoletti MI, Bombardelli E, Morazzoni P, Riva A, Giavazzi R (2002) Antiangiogenic and antitumor activity of IDN 5390, a new taxane derivative. Clin Cancer Res 8:1182–1188PubMedGoogle Scholar
  32. Tozer GM, Kanthou C, Parkins CS, Hill SA (2002) The biology of the combretastatins as tumor vascular targeting agents. Int J Exp Pathol 83:21–38PubMedCrossRefGoogle Scholar
  33. Yanow SK, Purcell LA, Pradel G, Sato A, Rodriguez A, Lee M, Spithill TW (2008) Potent antimalarial and transmission blocking activities of centanamycin, a novel DNA-binding agent. J Infect Dis 197:527–534PubMedCrossRefGoogle Scholar
  34. Zhai L, Blom J, Chen M, Brogger Christensen S, Kharazmil A (1995) The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob Agents Chemother 38:2742–2748Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dereje Desta
    • 1
    • 2
  • Robert Sjoholm
    • 1
  • Lauren Lee
    • 1
  • Megan Lee
    • 1
  • Kristin Dittenhafer
    • 1
  • Sarah Canche
    • 1
  • Balaji Babu
    • 1
  • Sameer Chavda
    • 1
  • Christie Dewar
    • 3
  • Stephanie Yanow
    • 3
  • Aaron A. Best
    • 2
  • Moses Lee
    • 1
  1. 1.Division of Natural and Applied Sciences, Department of ChemistryHope CollegeHollandUSA
  2. 2.Department of BiologyHope CollegeHollandUSA
  3. 3.Provincial Laboratory for Public HealthEdmontonCanada

Personalised recommendations