Medicinal Chemistry Research

, Volume 19, Issue 4, pp 403–412 | Cite as

Synthesis and evaluation of antiinflammatory activity of substituted chalcone derivatives

  • Xue-Wu Zhang
  • Dong-Hai Zhao
  • Ying-Chun Quan
  • Liang-Peng Sun
  • Xiu-Mei Yin
  • Li-Ping Guan
Original Research

Abstract

In an effort to develop potent antiinflammatory agents, a series of substituted chalcone derivatives was synthesized and evaluated for antiinflammatory activity through monitoring of their ability to inhibit xylene-induced ear edema in mice. Some of the tested compounds exhibited significant activity, and compounds 3f [(E)-1-(2,4-dihydroxyphenyl)-3-(4-dimethylamino)phenyl)prop-2-en-1-one] and 3h [(E)-3-(4-chlorophenyl)-1-(2,4-dihydroxyphenyl)prop-2-en-1-one] showed the highest antiinflammatory activity (62 and 68% inhibition, respectively, 2 h before administration), comparable with or even slightly more potent than the reference drug ibuprofen (53%). Furthermore, the structure–activity relationship of these substituted chalcone derivatives was demonstrated.

Keywords

Antiinflammatory Chalcone derivatives Ibuprofen Synthesis 

References

  1. Ballesteros JF, Sanz MJ, Ubeda A, Miranda MA, Iborra S, Payá M, Alcaraz MJ (1995) Synthesis and pharmacological evaluation of 2′-hydroxychalcones and flavones as inhibitors of inflammatory mediators generation. J Med Chem 38:2794–2797. doi:10.1021/jm00014a032 CrossRefPubMedGoogle Scholar
  2. Bekhit AA, Habib NS, Din A, Bekhit A (2001) Synthesis and antimicrobial evaluation of chalcone and syndrome derivatives of 4(3H)-quinazolinone. Boll Chim Farm 140:297–301PubMedGoogle Scholar
  3. Fan NT (1992) Organic synthesis dictionary (in Chinese). Beijing University of Engineering Press, Beijing, p 519Google Scholar
  4. Guan LP, Nan JX, Jin XJ, Jin QH, Kwak KC, Chai KY, Quan ZS (2005) Protective effects of chalcone derivatives for acute liver. Arch Pharm Res 28:81–86. doi:10.1007/BF02975140 CrossRefPubMedGoogle Scholar
  5. Hallas J, Lauritsen J, Villadsen HD, Gram LF (1995) Nonsteroidal anti-inflammatory drugs and upper gastrointestinal bleeding, identifying high-risk groups by excess risk estimates. Scand J Gastroenterol 30:438–444CrossRefPubMedGoogle Scholar
  6. Hiseh HK, Lee TH, Wang JP, Wang JJ, Lin CN (1998) Synthesis and antiinflammatory effects of chalcones and related compounds. Pharm Res 15:39–46. doi:10.1023/A:1011940401754 CrossRefGoogle Scholar
  7. Kumar SK, Hager E, Pettit C, Gurulingppa H, Davidson NE, Khan SR (2003) Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J Med Chem 46:2813–2815. doi:10.1021/jm030213+ CrossRefPubMedGoogle Scholar
  8. Lee SH, Seo GS, Kim JY, Lin XY, Kim H-D, Sohn DH (2006) Heme oxygenase 1 mediates antiinflammatory effects of 2′,4′,6′-tris(methoxymethoxy)chalcone. Eur J Pharm 532:178–186. doi:10.1016/j.ejphar.2006.01.005 CrossRefGoogle Scholar
  9. Liu M, Wilairat P, Go ML (2001) Antimalarial alkoxylated and hydroxylated chalcones [corrected]: structure–activity relationship analysis. J Med Chem 44:4443–4452. doi:10.1021/jm0101747 CrossRefPubMedGoogle Scholar
  10. Lopez SN, Castelli MV, Zacchino SA, Dominguez JN, Lobo G, Chrris-Charriss J, Cortes JC, Ribas JC, Devia C, Rodriguez AM, Enrizz RD (2001) In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg Med Chem 9:1999–2013. doi:10.1016/S0968-0896(01)00116-X CrossRefPubMedGoogle Scholar
  11. McCarthy D (1998) Nonsteroidal antiinflammatory drug-related gastrointestinal toxicity: definition and epidemiology. Am J Med 105(5A):3S–9S. doi:10.1016/S0002-9343(98)00274-5 CrossRefPubMedGoogle Scholar
  12. Murakami S, Muramatsu M, Aihara H, Otomo S (1991) Inhibition of gastric H+, K+-ATPase by the antiulcer agent, sofalcone. Biochem Pharmacol 42:1447–1451. doi:10.1016/0006-2952(91)90458-H CrossRefPubMedGoogle Scholar
  13. Raskin JB (1999) Gastrointestinal effects of nonsteroidal antiinflammatory therapy. Am J Med 106(5B):3S–12S. doi:10.1016/S0002-9343(99)00112-6 CrossRefPubMedGoogle Scholar
  14. Sogawa S, Nihro Y, Ueda H, Izumi A, Miki T, Matsumoto H, Satoh T (1993) 3,4-Dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors. J Med Chem 36:3904–3909. doi:10.1021/jm00076a019 CrossRefPubMedGoogle Scholar
  15. Van JR, Botting RM (1995) New insights into the mode of action of antiinflammatory drugs. Inflamm Res 44:1–10. doi:10.1007/BF01630479 CrossRefGoogle Scholar
  16. Viana GS, Bandeira MA, Matos FJ (2003) Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva allemao. Phytomedicine 10:189–196. doi:10.1078/094471103321659924 CrossRefPubMedGoogle Scholar
  17. Won SJ, Liu CT, Tsao LT, Weng JR, Ko HH, Wanf JP, Lin CN (2005) Synthetic chalcones as potential antiinflammatory and cancer chemopreventive agents. Eur J Med Chem 40:103–112. doi:10.1016/j.ejmech.2004.09.006 CrossRefPubMedGoogle Scholar
  18. Wu JH, Wang XH, Yi YH, Lee KH (2003) Anti-AIDS agents 54: a potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett 13:1813–1815. doi:10.1016/S0960-894X(03)00197-5 CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  • Xue-Wu Zhang
    • 1
    • 2
  • Dong-Hai Zhao
    • 3
  • Ying-Chun Quan
    • 4
  • Liang-Peng Sun
    • 4
  • Xiu-Mei Yin
    • 4
  • Li-Ping Guan
    • 1
    • 4
  1. 1.Ministry of Education, Key Laboratory of Organism Functional Factors of the Changbai MountainYanbian UniversityYanji CityPeople’s Republic of China
  2. 2.Basic Medical CollegeYanbian UniversityYanji CityPeople’s Republic of China
  3. 3.Jilin Medical CollegeJilin CityPeople’s Republic of China
  4. 4.College of PharmacyYanbian UniversityYanji CityPeople’s Republic of China

Personalised recommendations