Medicinal Chemistry Research

, Volume 19, Issue 5, pp 448–461

Antioxidant activity of alcoholic extract of Agrimonia pilosa Ledeb

  • Chunhuan He
  • Xiaowen Ji
  • Yingming Pan
  • Hengshan Wang
  • Kai Wang
  • Min Liang
  • Lizhu Yang
Original Research


Ultrasonically assisted extraction and Soxhlet extraction using 95% ethanol were performed to obtain ultrasonically assisted extract of Agrimonia pilosa (UEA) and Soxhlet extract of Agrimonia pilosa (SEA). The effects of the different extracting methods on the total phenolic (TP) and total flavonoid (TF) content of the extracts from Agrimonia pilosa were investigated. The findings showed that UEA contained higher TP and TF content than SEA. To understand better the effect of ultrasonic extraction, the antioxidant activities of UEA and SEA were evaluated with different antioxidant testing systems in vitro to determine reducing power, total antioxidant capacity, and free radical scavenging assays, including 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals. Both SEA and UEA exhibited satisfied antioxidant activity superior to that of synthetic antioxidant butylated hydroxytoluene (BHT). The antioxidant activity of the tested subjects was in the order of UEA > SEA > BHT. Their high phenolic and flavonoid contents could be responsible for their antioxidant activity and pharmacologic actions.


ABTS Agrimonia pilosa Antioxidant activity Total phenolic Total flavonoids Ultrasonic extraction 


  1. Benzie IFF, Strain JJ (1996) The ferric-reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.0292 CrossRefPubMedGoogle Scholar
  2. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200. doi:10.1038/1811199a0 CrossRefGoogle Scholar
  3. Brand WW, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT 20:25–30Google Scholar
  4. Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184. doi:10.1016/j.lfs.2003.09.047 CrossRefPubMedGoogle Scholar
  5. Choi YM, Jeong HS, Lee J (2007) Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 103:130–138. doi:10.1016/j.foodchem.2006.08.004 CrossRefGoogle Scholar
  6. Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem 51:8067–8072. doi:10.1021/jf034740d CrossRefPubMedGoogle Scholar
  7. Cook NC, Samman S (1996) Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76. doi:10.1016/0955-2863(95)00168-9 CrossRefGoogle Scholar
  8. Farombi EO, Britton G, Emerole GO (2000) Evaluation of the antioxidant activity and partial characterisation of extracts from browned yam flour diet. Food Res Int 33:493–499. doi:10.1016/S0963-9969(00)00074-0 CrossRefGoogle Scholar
  9. Girennavar B, Jayaprakasha GK, Jadegoud Y, Gowda GAN, Patil BS (2007) Radical scavenging and cytochrome P450 3A4 inhibitory activity of bergaptol and geranylcoumarin from grapefruit. Bioorg Med Chem 15:3684–3691. doi:10.1016/j.bmc.2007.03.047 CrossRefPubMedGoogle Scholar
  10. Guo JN, Weng XC, Wu H, Li QH, Bi KS (2005) Antioxidants from a Chinese medicinal herb–Psoralea corylifolia L. Food Chem 91:287–292. doi:10.1016/j.foodchem.2004.04.029 CrossRefGoogle Scholar
  11. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism, and structure–activity relationships. J Nutr Biochem 13:572–584. doi:10.1016/S0955-2863(02)00208-5 CrossRefPubMedGoogle Scholar
  12. Hsu CL, Chen WL, Weng YM, Tseng CY (2003) Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chem 83:85–92. doi:10.1016/S0308-8146(03)00053-0 CrossRefGoogle Scholar
  13. Kasai S, Watanabe S, Kawabata J (1992) Antimicrobial catechin derivatives of Agrimonia pilosa. Phytochemistry 31:787–789Google Scholar
  14. Kenichi M, Nobuharu K, Ryozo K (1987) Antitumor effect of agrimoniin, a tannin of Agrimonia pilosa Ledeb on transplantable rodent tumor. Jpn J Pharmacol 43:187–195. doi:10.1254/jjp.43.187 CrossRefGoogle Scholar
  15. Kosar M, Bozan B, Temelli F, Baser KHC (2007) Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food Chem 103:952–959. doi:10.1016/j.foodchem.2006.09.049 CrossRefGoogle Scholar
  16. Kuti JO (2004) Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem 85:527–533. doi:10.1016/S0308-8146(03)00184-5 CrossRefGoogle Scholar
  17. Lee MH, Lin CC (2007) Comparison of techniques for extraction of isoflavones from the root of Radix puerariae: ultrasonic and pressurized solvent extractions. Food Chem 105:223–228. doi:10.1016/j.foodchem.2006.11.009 CrossRefGoogle Scholar
  18. Lim YY, Murtijaya J (2007) Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT Food Sci Technol 40:1664–1669CrossRefGoogle Scholar
  19. Ma YQ, Ye XQ, Hao YB, Xu GN, Xu GH, Liu DH (2008) Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason Sonochem 15:227–232. doi:10.1016/j.ultsonch.2007.03.006 CrossRefPubMedGoogle Scholar
  20. Naosuke KB (1988) Triterpenoide from Agrimonia pilosa. Phytochemistry 27:297–299. doi:10.1016/0031-9422(88)80641-1 CrossRefGoogle Scholar
  21. Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412PubMedGoogle Scholar
  22. Ordonez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458. doi:10.1016/j.foodchem.2005.05.024 CrossRefGoogle Scholar
  23. Oyaizu M (1986) Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucose amine. JPN J Nutr 44:307–315Google Scholar
  24. Pan YM, Liang Y, Wang HS, Liang M (2004) Antioxidant activities of several Chinese medicine herbs. Food Chem 88:347–350. doi:10.1016/j.foodchem.2004.01.082 CrossRefGoogle Scholar
  25. Pan YM, Wang K, Huang SQ, Wang HS, Mu XM, He CH, Ji XW, Zhang J, Huang FJ (2008) Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chem 106:1264–1270. doi:10.1016/j.foodchem.2007.07.033 CrossRefGoogle Scholar
  26. Pan YM, Zhang XP, Wang HS, Liang Y, Zhu JC, Li HY, Zhang Z, Wu QM (2007a) Antioxidant potential of ethanolic extract of Polygonum cuspidatum and application in peanut oil. Food Chem 105:1518–1524. doi:10.1016/j.foodchem.2007.05.039 CrossRefGoogle Scholar
  27. Pan YM, Zhu JC, Wang HS, Zhang XP, Zhang Y, He CH, Ji XW, Li HY (2007b) Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem 103:913–918. doi:10.1016/j.foodchem.2006.09.044 CrossRefGoogle Scholar
  28. Paniwnyk L, Beaufoy E, Lorimer JP, Mason TJ (2001) The extraction of rutin from flower buds of Sophora japonia. Ultrason Sonochem 8:299–301. doi:10.1016/S1350-4177(00)00075-4 CrossRefPubMedGoogle Scholar
  29. Pei YH, Li X, Zhu TR (1989a) Studies on the chemical constituents from the rootsprouts of Agrimonia pilosa Ledeb. Acta Pharmacol Sin 24:431–437Google Scholar
  30. Pei YH, Li X, Zhu TR (1989b) Studies on the structure of a new isocoumarin glucoside of the rootsprouts of Agrimonia pilosa Ledeb. Acta Pharmacol Sin 24:837–840Google Scholar
  31. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. doi:10.1006/abio.1999.4019 CrossRefPubMedGoogle Scholar
  32. Rathee JS, Hassarajani SA, Chattopadhyay S (2007) Antioxidant activity of Nyctanthes arbor-tristis leaf extract. Food Chem 103:1350–1357. doi:10.1016/j.foodchem.2006.10.048 CrossRefGoogle Scholar
  33. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. doi:10.1016/S0891-5849(98)00315-3 CrossRefPubMedGoogle Scholar
  34. Reszka KJ, Britigan BE (2007) Doxorubicin inhibits oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate)(ABTS)by a lactoperoxidase/H2O2 system by reacting with ABTS-derived radical. Arch Biochem Biophys 466:164–171. doi:10.1016/ CrossRefPubMedGoogle Scholar
  35. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887. doi:10.1021/jf026182t CrossRefPubMedGoogle Scholar
  36. Sanchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Food Sci Agric 76:270–276. doi:10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9 CrossRefGoogle Scholar
  37. Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759. doi:10.1021/jf051513y CrossRefPubMedGoogle Scholar
  38. Sikwese FE, Duodu KG (2007) Antioxidant effect of a crude phenolic extract from sorghum bran in sunflower oil in the presence of ferric ions. Food Chem 104:324–331. doi:10.1016/j.foodchem.2006.11.042 CrossRefGoogle Scholar
  39. Slinkard K, Singleton VL (1977) Total phenol analyses: automation and comparison with manual methods. Am J Enol Vitic 28:49–55Google Scholar
  40. Sultana B, Anwar F, Przybylski R (2007) Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem 104:1106–1114. doi:10.1016/j.foodchem.2007.01.019 Google Scholar
  41. Valenta ÕP, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML (2002) Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J Agric Food Chem 50:4989–4993. doi:10.1021/jf020225o CrossRefGoogle Scholar
  42. Wang J, Sun BG, Cao YP, Tian Y (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106:804–810. doi:10.1016/j.foodchem.2007.06.062 CrossRefGoogle Scholar
  43. Wong CC, Li HB, Cheng KW, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric-reducing antioxidant power assay. Food Chem 97:705–711. doi:10.1016/j.foodchem.2005.05.049 CrossRefGoogle Scholar
  44. Yang B, Zhao MM, Shi J, Yang N, Jiang YM (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem 106:685–690. doi:10.1016/j.foodchem.2007.06.031 CrossRefGoogle Scholar
  45. Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43:27–32. doi:10.1021/jf00049a007 CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  • Chunhuan He
    • 1
  • Xiaowen Ji
    • 1
  • Yingming Pan
    • 1
  • Hengshan Wang
    • 1
  • Kai Wang
    • 1
  • Min Liang
    • 1
  • Lizhu Yang
    • 1
  1. 1.Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Chemical EngineeringGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations