Medicinal Chemistry Research

, Volume 18, Issue 4, pp 243–254 | Cite as

Search for monoglyceride lipase inhibitors: synthesis and screening of arylthioamides derivatives

  • Coco N. Kapanda
  • Giulio G. Muccioli
  • Geoffray Labar
  • Nihed Draoui
  • Didier M. Lambert
  • Jacques H. PoupaertEmail author
Original Research


Monoglyceride lipase (MGL) is the enzyme responsible for the termination of 2-arachidonoylglycerol (2-AG) signalling, an endogenous ligand for the G-protein coupled cannabinoid receptors CB1 and CB2. Its known abundance and physiological roles emphasize the interest of MGL as an attractive therapeutic target. Search for MGL inhibitors was undertaken by screening an arylthioamide series. The evaluation of arylthioamides derivatives activity as MGL inhibitors measured by the hydrolysis of [3H]-2-oleoylglycerol by human purified MGL led to the identification of (2-chloro-phenyl)-morpholin-4-yl-methanethione (2) and (3-nitro-phenyl) morpholin-4-yl-methanethione (12), which moreover exhibit good selectivity compared with human fatty acid amide hydrolase inhibition.


Monoglyceride lipase 2-Arachidonoylglycerol Arylthioamides derivatives Monoglyceride lipase inhibitors 



This work was supported by a research grant from the FNRS (FRSM 3.4.625.07 and FRFC 2.4.654.06) and C.N.K. is very indebted to the “Coopération technique belge” and the” Fonds Spécial de Recherche” (Université catholique de Louvain) for their respective fellowships.


  1. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular Characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87. doi: 10.1038/384083a0 PubMedCrossRefGoogle Scholar
  2. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949. doi: 10.1126/science.1470919 PubMedCrossRefGoogle Scholar
  3. Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC et al (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691. doi: 10.1038/372686a0 PubMedCrossRefGoogle Scholar
  4. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL et al (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99:10819–10824. doi: 10.1073/pnas.152334899 PubMedCrossRefGoogle Scholar
  5. Deutsch DG, Omeir R, Arreaza G (1997) Methyl arachidonyl fluorophosphonate: a potent irreversible inhibitor of anandamide amidase. Biochem Pharmacol 53:255–260. doi: 10.1016/S0006-2952(96)00830-1 PubMedCrossRefGoogle Scholar
  6. Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 92:3376–3380. doi: 10.1073/pnas.92.8.3376 PubMedCrossRefGoogle Scholar
  7. Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P et al (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61. doi: 10.1111/j.1432-1033.1995.tb20780.x PubMedCrossRefGoogle Scholar
  8. Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabiboid signalling in hippocampus. J Neurosci 27(5):1211–1219. doi: 10.1523/JNEUROSCI.4159-06.2007 PubMedCrossRefGoogle Scholar
  9. Hillard CJ, Edgemont WS, Jarrahian A, Campbell WB (1997) Accumulation of N- arachidonoylethanolamide (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J Neurochem 69:631–638PubMedCrossRefGoogle Scholar
  10. Ishac EJ, Jiang L, Lake KD, Varga K, Abood ME, Kunos G (1996) Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118:20213–22028Google Scholar
  11. Jayamanne A, Greenwood R, Mitchell VA, Aslan S, Piomelli D, Vaughan CW (2006) Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol 147(3):281–288. doi: 10.1038/sj.bjp.0706510 PubMedCrossRefGoogle Scholar
  12. Kathuria DG, Gaetani S, Flegey D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81. doi: 10.1038/nm803 PubMedCrossRefGoogle Scholar
  13. Kishimoto S, Kobayashi Y, Oka S, Gokoh M, Waku K, Sugiura T (2004) 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces accelerated production of chemokines in HL–60 cells. J Biochem 135(4):517–524. doi: 10.1093/jb/mvh063 PubMedCrossRefGoogle Scholar
  14. Labar G, Michaux C (2007) Fatty acid amide hydrolase: from characterization to Therapeutics. Chem Biodivers 4:1882–1902. doi: 10.1002/cbdv.200790157 PubMedCrossRefGoogle Scholar
  15. Labar G, Bauvois C, Muccioli GG, Wouters J, Lambert DM (2007) Disulfiram is an inhibitor of purified monoacylglycerollipase, the enzyme regulating 2-arachidonoylglycerol signalling. ChemBioChem 8:1293–1297. doi: 10.1002/cbic.200700139 PubMedCrossRefGoogle Scholar
  16. Labar G, Vliet FV, Wouters J, Lambert DM (2008) A MBP-FAAH fusion protein as a tool to produce human and rat fatty acid amide hydrolase: expression and pharmacological comparison. Amino Acids 34:127–133. doi: 10.1007/s00726-007-0540-1 PubMedCrossRefGoogle Scholar
  17. Lambert DM, Fowler CJ (2005) The endocannabinoid system: drugs targets, lead compounds, and potential therapeutic applications. J Med Chem 48(16):5059–5087. doi: 10.1021/jm058183t PubMedCrossRefGoogle Scholar
  18. Makara JK, Mor M, Flegey D (2005) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signalling in hippocampus. Nat Neurosci 8:1139–1141. doi: 10.1038/nn1521 PubMedCrossRefGoogle Scholar
  19. Mechoulam R (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90. doi: 10.1016/0006-2952(95)00109-D PubMedCrossRefGoogle Scholar
  20. Moore SA, Nomikos GG, Dickason-Chesterfield AK, Schober DA, Schaus JM, Ying B-P, XU Y-C, Phebus L, Simmons RMA, Li D, Iyengar S, Felder CC (2005) Identification of a high-affinity binding site involved in the transport of endocannabinoids. Proc Natl Acad Sci USA 102:17852–17857. doi: 10.1073/pnas.0507470102 PubMedCrossRefGoogle Scholar
  21. Muccioli GG, Xu C, Odah E, Cudaback E, Cisneros JA, Lambert DM et al (2007) Identification of a novel endocannabinoid–hydrolyzing enzyme expressed by microglial cells. J Neurosci 27:2883–2889. doi: 10.1523/JNEUROSCI.4830-06.2007 PubMedCrossRefGoogle Scholar
  22. Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462. doi: 10.1124/pr.58.3.2 PubMedCrossRefGoogle Scholar
  23. Poupaert JH, Duarte S, Colacino E, Depreux P, McCurdy CR, Lambert DM (2004) Willgerodt–Kindler microwave-enhanced synthesis of thioamides derivatives. Phos Sulf Sil Rel. Elem 179:1959–1973CrossRefGoogle Scholar
  24. Poupaert JH, Carato P, McCurdy CR (2005) A simple and effective method for the thionation of amides to thioamides by using Al2O3-supported P4S10. Lett Org Chem 2:330–333. doi: 10.2174/1570178054038957 CrossRefGoogle Scholar
  25. Rolfs A, Liebscher J (1998) 3-morpholino-2-phenylthioacrylic acid morpholide and 5-(4-bromobenzoyl-2-(4-morpholino)-3-phenylthiophene. Org Synth Coll 9:99Google Scholar
  26. Saario SM, Laitinen JT (2007) Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglycerol. Chem Biodivers 4(8):1903–1913. doi: 10.1002/cbdv.200790158 PubMedCrossRefGoogle Scholar
  27. Saario SM, Salo OM, Nevalainen T, Poso A, Laitinen JT, Järvinen T et al (2005) Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysisi of 2-arachidonoyl-glycerol in rat cerebellar membranes. Chem Biol 12:649–656. doi: 10.1016/j.chembiol.2005.04.013 PubMedCrossRefGoogle Scholar
  28. Saario SM, Poso A, Juvonen RO, Järvinen T, Salo-Ahen OM (2006) Fatty Acid Amid Hydrolase inhibitors from virtual screening of the endocannabinoid system. J Med Chem 49:4650–4656. doi: 10.1021/jm060394q PubMedCrossRefGoogle Scholar
  29. Sagan S, Vanance L, Torrens Y, Cordier J, Glowinski J, Giaume C (1999) Anandamide and WIN 55212–2 inhibit cyclic AMP formation through G-protein-coupled receptors distinct from CB1 cannabinoid receptors in cultured astrocytes. Eur J Neurosci 11:691–699. doi: 10.1046/j.1460-9568.1999.00480.x PubMedCrossRefGoogle Scholar
  30. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K et al (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brainBiochem. Biophys Res Commun 215:89–905. doi: 10.1006/bbrc.1995.2437 CrossRefGoogle Scholar
  31. Tarzia G, Antonietti F, Duranti A, Tontini A, Mor M, Rivara S, Traldi P, Astarita G, King A, Clapper JR, Piomelli D (2007) Identification of a bioactive impurity in a commercial sample of 6-methyl-2-p-tolylaminobenzo[d][1,3] oxazin-4-one (URB754). Ann di Chim 97:887–894CrossRefGoogle Scholar
  32. Vandevoorde S, Jonsson KO, Labar G, Persson E, Lambert DM, Fowler CJ (2007) Lack of selectivity of URB602 for 2-oleoylglycerol compared to Anandamide hydrolysis in vitro. Br J Pharmacol 150:186–191. doi: 10.1038/sj.bjp.0706971 PubMedCrossRefGoogle Scholar
  33. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592. doi: 10.1038/35069076 PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  • Coco N. Kapanda
    • 1
  • Giulio G. Muccioli
    • 1
  • Geoffray Labar
    • 1
  • Nihed Draoui
    • 1
  • Didier M. Lambert
    • 1
  • Jacques H. Poupaert
    • 1
    Email author
  1. 1.Drug Design and Discovery Center, Unité de Chimie Pharmaceutique et de Radiopharmacie, Département des Sciences Pharmaceutiques, Faculté de MédecineUniversité Catholique de LouvainBruxellesBelgium

Personalised recommendations