Advertisement

On Integrals Over a Convex Set of the Wigner Distribution

  • Bérangère Delourme
  • Thomas Duyckaerts
  • Nicolas LernerEmail author
Article
  • 12 Downloads

Abstract

We provide an example of a normalized \(L^{2}({\mathbb {R}})\) function u such that its Wigner distribution \({\mathcal {W}}(u,u)\) has an integral \(>1\) on the square \([0,a]\times [0,a]\) for a suitable choice of a. This provides a negative answer to a question raised by Flandrin (Proc IEEE Int Conf Acoustics 4(1):2176–2179, 1988). Our arguments are based upon the study of the Weyl quantization of the characteristic function of \({{\mathbb {R}}_{+}\times {\mathbb {R}}_{+}}\) along with a precise numerical analysis of its discretization.

Keywords

Wigner distribution Convexity Weyl quantization 

Mathematics Subject Classification

35P05 81S30 81Q10 

Notes

References

  1. 1.
    Ascher, U.M., Greif, C.: A First Course on Numerical Methods, vol. 1. SIAM, Philadelphia (2011)CrossRefGoogle Scholar
  2. 2.
    Demailly, J.P.: Analyse Numérique et équations Différentielles, 4th edn. EDP Sciences, Les Ulis (2016)zbMATHGoogle Scholar
  3. 3.
    Flandrin, P.: Maximum signal energy concentration in a time-frequency domain. Proc. IEEE Int. Conf. Acoust. 4(1), 2176–2179 (1988)Google Scholar
  4. 4.
    Flandrin, P.: Time-Frequency/Time-Scale Analysis, Wavelet Analysis and Its Applications, vol. 10, Academic Press, Inc., San Diego. With a preface by Yves Meyer, Translated from the French by Joachim Stöckler (1999)Google Scholar
  5. 5.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. (CSUR) 23(1), 5–48 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Golub, G., Van Loan, C.: Matrix Computation. C. Johns Hopkins Univ. Press, London (1996)zbMATHGoogle Scholar
  7. 7.
    Gröchenig, K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2001)CrossRefGoogle Scholar
  8. 8.
    Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-Differential Operators, Pseudo-Differential Operators. Theory and Applications, vol. 3. Birkhäuser, Basel (2010)CrossRefGoogle Scholar
  9. 9.
    Lieb, E.H., Ostrover, Y.: Localization of multidimensional Wigner distributions. J. Math. Phys. 51(10), 102101–102106 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press Inc., San Diego (1998)zbMATHGoogle Scholar
  11. 11.
    Quarteroni, A., Saleri, F., Gervasio, P.: Scientific Computing with Matlab and Octave. Springer, New York (2014)CrossRefGoogle Scholar
  12. 12.
    Tyrrell Rockafellar, R.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)CrossRefGoogle Scholar
  13. 13.
    Weyl, H.: Gruppentheorie und Quantenmechanik, 2nd edn. Wissenschaftliche Buchgesellschaft, Darmstadt (1977)zbMATHGoogle Scholar
  14. 14.
    Wood, J.G., Bracken, A.J.: Bounds on integrals of the Wigner function: the hyperbolic case. J. Math. Phys. 46(4), 042103–042114 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Bérangère Delourme
    • 1
  • Thomas Duyckaerts
    • 2
  • Nicolas Lerner
    • 3
    Email author
  1. 1.LAGA, UMR 7539, Institut GaliléeUniversité Paris 13VilletaneuseFrance
  2. 2.Institut Universitaire de France & LAGA, UMR 7539, Institut GaliléeUniversité Paris 13VilletaneuseFrance
  3. 3.Institut de Mathématiques de JussieuSorbonne Université (former Paris VI)Paris cedex 05France

Personalised recommendations