Advertisement

Journal of Fourier Analysis and Applications

, Volume 25, Issue 6, pp 3220–3258 | Cite as

\(\pmb {{\mathcal {H}}_{p}}\)-Theory of General Dirichlet Series

  • Andreas Defant
  • Ingo SchoolmannEmail author
Article
  • 71 Downloads

Abstract

Inspired by results of Bayart on ordinary Dirichlet series \(\sum a_n n^{-s}\), the main purpose of this article is to start an \({\mathcal {H}}_p\)-theory of general Dirichlet series \(\sum a_n e^{-\lambda _{n}s}\). Whereas the \({\mathcal {H}}_p\)-theory of ordinary Dirichlet series, in view of an ingenious identification of Bohr, may be seen as a sub-theory of Fourier analysis on the infinite dimensional torus \({\mathbb {T}}^\infty \), the \({\mathcal {H}}_p\)-theory of general Dirichlet series is build as a sub-theory of Fourier analysis on certain compact abelian groups, including the Bohr compactification \({\overline{{\mathbb {R}}}}\) of the reals. Our approach allows to extend various important facts on Hardy spaces of ordinary Dirichlet series to the much wider setting of \({\mathcal {H}}_p\)-spaces of general Dirichlet series.

Keywords

General Dirichlet series Hardy spaces Bohr compactification 

Mathematics Subject Classification

Primary 43A17 Secondary 30H10 30B50 

Notes

References

  1. 1.
    Aleman, A., Olsen, J.F., Saksman, E.: Fourier multipliers for Hardy spaces of Dirichlet series. Int. Math. Res. Not. IMRN 16, 4368–4378 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bayart, F.: Hardy spaces of Dirichlet series and their compostion operators. Monatsh. Math. 136, 203–236 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32, 600–622 (1931)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen \(\sum {\frac{a_{n}}{n^{s}}}\). Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 4, 441–488 (1913)zbMATHGoogle Scholar
  5. 5.
    Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bohr, H.: Zur Theorie der fastperiodischen Funktionen II. Acta Math. 46, 101–214 (1925)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Choi, Y.S., Kim, U.Y., Maestre, M.: Banach spaces of general Dirichlet series. J. Math. Anal. Appl. 465, 839–856 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Defant, A., Pérez, A.: Hardy spaces of vector-valued Dirichlet series. Studia Math. 243(1), 53–78 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Defant, A., Schoolmann, I.: Variants of a theorem of Helson on general Dirichlet series (2019) (in preparation)Google Scholar
  10. 10.
    Defant, A., Garcia, D., Maestre, M., Sevilla Peris, P.: Dirichlet Series and Holomorphic Functions in High Dimensions. New Mathematical Monographs Series. Cambridge University Press, Cambridge (2019)CrossRefGoogle Scholar
  11. 11.
    Defant, A., Carando, D., Marcerca, F., Schoolmann, I.: Vector valued Hardy spaces of general Dirichlet series (2019) (in preparation)Google Scholar
  12. 12.
    Doss, R.: One the Fourier-Stieltjes transforms of singular or absolutely continuous measures. Math. Z. 97, 77–84 (1967)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Cambridge Tracts in Mathematics and Mathematical Physics Series, vol. 18. Cambridge University Press, Cambridge (1915)Google Scholar
  14. 14.
    Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated function in \(L^{2}(0,1)\). Duke Math. J. 86(1), 1–37 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Helson, H.: Compact groups and Dirichlet series. Ark. Mat. 8(16), 139–143 (1969)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Helson, H.: Dirichlet Series. Regent Press, Berkeley (2005)zbMATHGoogle Scholar
  17. 17.
    Helson, H.: Harmonic Analysis. Texts and Readings in Mathematics, vol. 7. Hindustan Book, New Delhi (2010)CrossRefGoogle Scholar
  18. 18.
    Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165–202 (1958)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hewitt, E.: Linear functionals on almost periodic functions. Trans. Am. Math. Soc. 74(2), 303–322 (1953)zbMATHGoogle Scholar
  20. 20.
    Landau, E.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1921)zbMATHGoogle Scholar
  21. 21.
    Neder, L.: Zum Konvergenzproblem der Dirichletschen Reihen beschränkter Funktionen. Math. Z. 14, 149–158 (1922)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series. Lecture Notes. Hindustan Book Agency, New Delhi (2013)CrossRefGoogle Scholar
  23. 23.
    Rudin, W.: Fourier Analysis on Groups. Interscience Publishers, Geneva (1962)zbMATHGoogle Scholar
  24. 24.
    Schoolmann, I.: Bohr’s theorem for general Dirichlet series. Math. Nachr. (2019) (to appear)Google Scholar
  25. 25.
    Varopoulos, N.Th.: A theorem on the Bohr compactification of a locally compact Abelian group. Proc. Camb. Philos. Soc. 61, 65–68 (1963)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für MathematikCarl von Ossietzky UniversitätOldenburgGermany

Personalised recommendations