Advertisement

Fourier Analysis for Type III Representations of the Noncommutative Torus

  • Francesco FidaleoEmail author
Research Article
  • 4 Downloads

Abstract

For the noncommutative 2-torus, we define and study Fourier transforms arising from representations of states with central supports in the bidual, exhibiting a possibly nontrivial modular structure (i.e. type \(\mathrm{{III}}\) representations). We then prove the associated noncommutative analogous of Riemann–Lebesgue Lemma and Hausdorff–Young Theorem. In addition, the \(L^p\)-convergence result of the Cesaro means (i.e. the Fejer theorem), and the Abel means reproducing the Poisson kernel are also established, providing inversion formulae for the Fourier transforms in \(L^p\) spaces, \(p\in [1,2]\). Finally, in \(L^2(M)\) we show how such Fourier transforms “diagonalise” appropriately some particular cases of modular Dirac operators, the latter being part of a one-parameter family of modular spectral triples naturally associated to the previously mentioned non type \(\mathrm{{II_1}}\) representations.

Keywords

Noncommutative harmonic analysis Noncommutative geometry Noncommutative torus Type III representations Noncommutative measure theory Modular spectral triples 

Mathematics Subject Classification

43A99 46L36 46L51 46L65 46L87 58B34 

Notes

Acknowledgements

The author acknowledges the financial support of Italian INDAM-GNAMPA. The present project is part of “MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006”. He is grateful to the referees for a very careful reading of the manuscript, and for several suggestions which contribute to improve the presentation of the paper.

References

  1. 1.
    Bergh, J., Löftröm, J.: Interpolation Spaces, an Introduction. Springer, New York (1976)CrossRefGoogle Scholar
  2. 2.
    Blecher, D.: The standard dual of an operator space. Pac. J. Math. 153, 15–30 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boca, F.-P.: Rotation \(C^*\)-algebras and almost Mathieu operators. Theta Bucharest (2001)Google Scholar
  4. 4.
    Bratteli O., Robinson D. W.: Operator Algebras and Quantum Statistical Mechanics I, II. Springer, Berlin (1887 and 1997)Google Scholar
  5. 5.
    Carey A.L., Phillips J., Rennie A.: Spectral triples: examples and index theory. In: Carey (Ed.) Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ESI Lect. Math. Phys., pp. 175–265 (2011)Google Scholar
  6. 6.
    Chen, Z., Xu, Q., Yin, Z.: Harmonic analysis on quantum tori. Commun. Math. Phys. 322, 755–805 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)zbMATHGoogle Scholar
  8. 8.
    Connes, A., Moscovici, H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27, 639–684 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fidaleo, F.: Canonical operator space structures in non-commutative \(L^p\) spaces. J. Funct. Anal. 169, 226–250 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fidaleo, F., Suriano, L.: Type III representations and Modular Spectral Triples for the noncommutative torus. J. Funct. Anal. 275, 1484–1531 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Forsyth, I., Mesland, B., Rennie, A.: Dense domains, symmetric operators and spectral triple. N. Y. J. Math. 20, 1001–1020 (2014)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Haagerup, U.: \(L^p\) spaces associated with an arbitrary von Neumann algebra. Colloq. Int C.N.R.S. 274, 175–184 (1979)zbMATHGoogle Scholar
  13. 13.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Khinchin, A.Ya.: Continued Fractions. The University of Chicago Press, Chicago (1964)zbMATHGoogle Scholar
  15. 15.
    Kosaki, H.: Application of the complex interpolation method to a von Neumann algebra: non-commutative \(L^p\) spaces. J. Funct. Anal. 56, 29–78 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Matsumoto, S.: Orbit equivalence types of circle diffeomorphisms with a Liouville rotation number. Nonlinearity 26, 1401–1414 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Niculescu, C.P., Ströh, A., Zsidó, L.: Noncommutative estension of classical and multiple recurrence theorems. J. Oper. Theory 50, 3–52 (2003)zbMATHGoogle Scholar
  18. 18.
    Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  19. 19.
    Pisier, G.: The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Amer. Math. Soc. 122, (1996)Google Scholar
  20. 20.
    Ricard, È.: \(L^p\)-multipliers on quantum tori. J. Funct. Anal. 270, 4604–4613 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ruan, Z.-J.: Subspaces of \(C^*\)-algebras. J. Funct. Anal. 76, 217–230 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  23. 23.
    Sondow, J.: An irrationality measure for Liouville numbers and conditional measures for Euler’s constant. arXiv:math/0307308
  24. 24.
    Strǎtilǎ, Ş.: Modular Theory in Operator Algebras. Abacus Press, Tunbridge Wells (1981)zbMATHGoogle Scholar
  25. 25.
    Takesaki, M.: Theory of Operator Algebras I, II, III. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  26. 26.
    Terp, M.: Interpolation spaces between a von Numann algebra and its predual. J. Oper. Theory 9, 327–360 (1982)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Tomiyama, J.: On the transpose map of matrix algebrs. Proc. Am. Math. Soc. 88, 635–638 (1983)CrossRefzbMATHGoogle Scholar
  28. 28.
    Tomiyama, J.: Recent development of the theory of completely bounded maps between \(C^*\)-algebras. Publ. RIMS Kyoto Univ. 19, 1283–1303 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Watanabe, N.: growth sequences for circle diffeomorphisms. Geom. Funct. Anal. 17, 320–331 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomeItaly

Personalised recommendations