Advertisement

Journal of Fourier Analysis and Applications

, Volume 25, Issue 4, pp 2037–2063 | Cite as

Beyond Wiener’s Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters

  • Julien FageotEmail author
  • Michael Unser
  • John Paul Ward
Article

Abstract

A convolution algebra is a topological vector space \({\mathcal {X}}\) that is closed under the convolution operation. It is said to be inverse-closed if each element of \({\mathcal {X}}\) whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. The theory of discrete Banach convolution algebras is well established with a complete characterization of the weighted \(\ell _1\) algebras that are inverse-closed—these are henceforth referred to as the Gelfand–Raikov–Shilov (GRS) spaces. Our starting point here is the observation that the space \({\mathcal {S}}( \mathbb {Z}^d)\) of rapidly decreasing sequences, which is not Banach but nuclear, is an inverse-closed convolution algebra. This property propagates to the more constrained space of exponentially decreasing sequences \({\mathcal {E}}( \mathbb {Z}^d)\) that we prove to be nuclear as well. Using a recent extended version of the GRS condition, we then show that \({\mathcal {E}}( \mathbb {Z}^d)\) is actually the smallest inverse-closed convolution algebra. This allows us to describe the hierarchy of the inverse-closed convolution algebras from the smallest, \({\mathcal {E}}( \mathbb {Z}^d)\), to the largest, \(\ell _{1}( \mathbb {Z}^d)\). In addition, we prove that, in contrast to \({\mathcal {S}}( \mathbb {Z}^d)\), all members of \({\mathcal {E}}( \mathbb {Z}^d)\) admit well-defined convolution inverses in \({\mathcal {S}}'( \mathbb {Z}^d)\) with the “unstable” scenario (when some frequencies are vanishing) giving rise to inverse filters with slowly-increasing impulse responses. Finally, we use those results to reveal the decay and reproduction properties of an extended family of cardinal spline interpolants.

Keywords

Wiener’s lemma Sequence spaces Convolution algebras Nuclear spaces 

Mathematics Subject Classification

Primary 46H05 11M45 46A45 Secondary 47B37 

Notes

References

  1. 1.
    Aldroubi, A., Feichtinger, H.G.: Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: the \(L^p\)-theory. Proc. Am. Math. Soc. 126(9), 2677–2686 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aldroubi, A., Sun, Q., Tang, W.S.: \(p\)-frames and shift invariant subspaces of \(L^p\). J. Fourier Anal. Appl. 7(1), 1–21 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Almira, J.M., Luther, U.: Inverse closedness of approximation algebras. J. Math. Anal. Appl. 314(1), 30–44 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Atiyah, M.F.: Resolution of singularities and division of distributions. Commun. Pure Appl. Math. 23(2), 145–150 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Baskakov, A.G.: Wiener’s theorem and the asymptotic estimates of the elements of inverse matrices. Funct. Anal. Appl. 24(3), 222–224 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Baskakov, A.G.: Estimates for the entries of inverse matrices and the spectral analysis of linear operators. Izvestiya: Math. 61(6), 1113–1135 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chui, C.K., Jetter, K., Ward, J.D.: Cardinal interpolation by multivariate splines. Math. Comput. 48(178), 711–724 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    de Boor, C., Hollig, K., Riemenschneider, S.: Fundamental solutions for multivariate difference equations. Am. J. Math. 111(3), 403–415 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Debrouwere, A.: Generalized function algebras containing spaces of periodic ultradistributions. In: Generalized Functions and Fourier Analysis, pp. 59–78. Springer, Berlin (2017)Google Scholar
  11. 11.
    Debrouwere, A., Vindas, J.: Discrete characterizations of wave front sets of fourier-lebesgue and quasianalytic type. J. Math. Anal. Appl. 438(2), 889–908 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Demko, S., Moss, W.F., Smith, P.W.: Decay rates for inverses of band matrices. Math. Comput. 43(168), 491–499 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Feichtinger, H.G.: Gewichtsfunktionen auf lokalkompakten Gruppen. Sitzungsber.d.österr. Akad.Wiss 188, 451–471 (1979)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Feichtinger, H.G.: New results on regular and irregular sampling based on Wiener amalgams. In: Function Spaces (Edwardsville, IL, 1990). Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 107–121. Dekker, New York (1992)Google Scholar
  15. 15.
    Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: Function Spaces (Edwardsville, IL, 1990). Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 123–137. Dekker, New York (1992)Google Scholar
  16. 16.
    Fernández, C., Galbis, A., Toft, J.: Spectral properties for matrix algebras. J. Fourier Anal. Appl. 20(2), 362–383 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fernández, C., Galbis, A., Toft, J.: Characterizations of GRS-weights, and consequences in time-frequency analysis. J. Pseudo-Differ. Oper. Appl. 3(6), 383–390 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gelfand, I.M., Raikov, D., Shilov, G.: Commutative Normed Rings. Chelsea Publishing Co., New York (1964)Google Scholar
  19. 19.
    Grafakos, L.: Classical Fourier Analysis. Springer, Berlin (2008)zbMATHGoogle Scholar
  20. 20.
    Gröchenig, K.: Weight functions in time-frequency analysis. In: Rodino, L., et al. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, pp. 343–366. Fields Institute Comm, Toronto (2007)zbMATHGoogle Scholar
  21. 21.
    Gröchenig, K.: Wiener’s lemma: theme and variations. An introduction to spectral invariance and its applications. In: Four Short Courses on Harmonic Analysis, pp. 175–234. Springer, Berlin (2010)Google Scholar
  22. 22.
    Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17(1), 1–8 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Memoirs of the American Mathematical Society, vol. 16 (1955)Google Scholar
  24. 24.
    Heil, C.: An introduction to weighted Wiener amalgams. Citeseer, pp. 183–216. Allied Publishers, New Delhi (2003)Google Scholar
  25. 25.
    Helmut, H.S.: Topological Vector Spaces, 2nd edn. Graduate Texts in Mathematics, vol. 3. Springer, Berlin (1999)Google Scholar
  26. 26.
    Jaffard, S.: Propriétés des matrices «bien localisées» près de leur diagonale et quelques applications. In: Annales de l’IHP Analyse non linéaire, vol. 7, pp. 461–476 (1990)Google Scholar
  27. 27.
    Katznelson, Y.: An Introduction to Harmonic Analysis. Dover Publications, New York (1976)zbMATHGoogle Scholar
  28. 28.
    Köthe, G.: Topological vector spaces. I. Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159. Springer, New York (1969)Google Scholar
  29. 29.
    Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  30. 30.
    Krishtal, I.: Wiener’s lemma: pictures at an exhibition. Rev. Union Mat. Argent. 52, 61–79 (2011)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Łojasiewicz, S.: Sur le problème de la division. Stud. Math. 18(1), 87–136 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Madych, W.R., Nelson, S.A.: Polyharmonic cardinal splines. J. Approx. Theory 60(2), 141–156 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Meijering, E.: A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc. IEEE 90(3), 319–342 (2002)CrossRefGoogle Scholar
  34. 34.
    Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  35. 35.
    Micchelli, C.: Cardinal L-splines. In: Karlin, S., Micchelli, C., Pinkus, A., Schoenberg, I. (eds.) Studies in Spline Functions and Approximation Theory, pp. 203–250. Academic Press, New York (1976)Google Scholar
  36. 36.
    Newman, D.J.: A simple proof of Wiener’s \(1/f\) theorem. Proc. Am. Math. Soc. 48(1), 264–265 (1975)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Peetre, J.: Concave majorants of positive functions. Acta Math. Hung. 21(3), 327–333 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972)zbMATHCrossRefGoogle Scholar
  39. 39.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. 1. Gulf Professional Publishing, Houston (1980)zbMATHGoogle Scholar
  40. 40.
    Schoenberg, I.J.: Cardinal Spline Interpolation. Society of Industrial and Applied Mathematics. SIAM, Philadelphia, PA (1973)zbMATHCrossRefGoogle Scholar
  41. 41.
    Seeley, R.T.: Eigenfunction expansions of analytic functions. Proc. Am. Math. Soc. 21(3), 734–738 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Shin, C.E., Sun, Q.: Wiener’s lemma: localization and various approaches. Appl. Math. A J. Chin. Univ. 28(4), 465–484 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Am. Math. Soc. 359(7), 3099–3123 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited. IEEE Trans. Med. Imaging 19(7), 739–758 (2000)CrossRefGoogle Scholar
  45. 45.
    Toft, J.: The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 3(2), 145–227 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Trèves, F.: Topological Vector Spaces, Distributions and Kernels, vol. 25. Dover Publications, New York (2006)zbMATHGoogle Scholar
  47. 47.
    Unser, M.: Sampling—50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000)zbMATHCrossRefGoogle Scholar
  48. 48.
    Unser, M., Blu, T.: Cardinal exponential splines: part I-theory and filtering algorithms. IEEE Trans. Signal Process. 53(4), 1425–1449 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Wiener, N.: On the representation of functions by trigonometrical integrals. Mathematische Zeitschrift 24(1), 575–616 (1926)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Wiener, N.: Tauberian theorems. Ann. Math. 33(1), 1–100 (1932)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biomedical Imaging GroupÉcole polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Department of MathematicsNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations