Advertisement

Computation of Adaptive Fourier Series by Sparse Approximation of Exponential Sums

  • Gerlind Plonka
  • Vlada Pototskaia
Article
  • 50 Downloads

Abstract

In this paper, we study the convergence of adaptive Fourier sums for real-valued \(2\pi \)-periodic functions. For this purpose, we approximate the sequence of classical Fourier coefficients by a short exponential sum with a pre-defined number of \(N+1\) terms. The obtained approximation can be interpreted as an adaptive N-th Fourier sum with respect to the orthogonal Takenaka-Malmquist basis. Using the theoretical results on rational approximation in Hardy spaces and on the decay of singular values of special infinite Hankel matrices, we show that adaptive Fourier sums can converge essentially faster than classical Fourier sums for a large class of functions. Further, we derive an algorithm to compute almost optimal adaptive Fourier sums. Our numerical results show that the significantly better convergence behavior of adaptive Fourier sums for optimally chosen basis elements can also be achieved in practice. For comparison, we also provide a greedy algorithm to determine an adaptive Fourier sum. This algorithm requires less computational effort but yields essentially slower convergence.

Keywords

Adaptive Fourier sum Prony method AAK theory Infinite Hankel matrices Adaptive Fouries series Takenaka-Malmquist basis Convergence rate 

Mathematics Subject Classification

15A18 41A30 42A16 65F15 

Notes

Acknowledgements

The authors would like to thank the reviewers for valuable comments to improve the manuscript. The authors gratefully acknowledge the funding of this work by the DFG in the framework of the GRK 2088 and the project PL 170/16-1.

References

  1. 1.
    Adamjan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. Mat. Sb. 86, 34–75 (1971). (in Russian)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Akhiezer, N.I.: Lectures on Approximation Theory, Nauka, Moscow 1965 (Russian). Dover Publications Inc, New York (1992)Google Scholar
  3. 3.
    Andersson, F., Carlsson, M., de Hoop, M.V.: Sparse approximation of functions using sums of exponentials and AAK theory. J. Approx. Theory 163, 213–248 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beckermann, B., Townsend, A.: On the singular values of matrices with displacement structure. SIAM J. Matrix. Anal. Appl. 38(4), 1227–1248 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berg, L.: Lineare Gleichungssysteme mit Bandstruktur. Carl Hanser, München/Wien (1986)zbMATHGoogle Scholar
  6. 6.
    Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bray, H.E.: Functions of ecart fini. Amer. J. Math. 51(1), 149–164 (1929)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bultheel, A., Carrette, P.: Algebraic and spectral properties of generalized Toeplitz matrices. SIAM J. Control Optim. 41(5), 1413–1439 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chui, C.K., Chen, G.: Discrete \(H^{\infty }\) Optimization. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Demmel, J.: Accurate singular value decomposition of structured matrices. SIAM J. Matrix Ana. Appl. 21(2), 562–580 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hartman, P.: On completely continuous Hankel matrices. Proc. Amer. Math. Soc. 9, 862–866 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Haut, T.S., Beylkin, G.: Fast and accurate con-eigenvalue algorithm for optimal rational approximations. SIAM J. Matrix Anal. Appl. 33(4), 1101–1125 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Heuberger, P.S.C., Van den Hof, P.M.J., Wahlberg, B.: Modelling and Identification with Rational Orthogonal Basis Functions. Springer, London (2005)CrossRefGoogle Scholar
  15. 15.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  16. 16.
    Lanczos, C.: Discourse on Fourier Series. SIAM, Pathum Wan (1966)zbMATHGoogle Scholar
  17. 17.
    Martínez-Avendaño, R.A., Rosenthal, Peter: An Introduction to Operators on the Hardy-Hilbert Space, Graduate Texts im Mathematics. Springer, New York (2007)zbMATHGoogle Scholar
  18. 18.
    Meinguet, J.: A simplified presentation of the Adamjan-Arov-Krein approximation theory. In: Werner, H., Wuytack, L., Ng, E., Bünger, H.J. (eds.) Computational Aspects of Complex Analysis, vol. 102, pp. 217–248. NATO Advanced Study Institutes Series, Dordrecht (1983)CrossRefGoogle Scholar
  19. 19.
    Nehari, Z.: On bounded linear forms. Ann. Math. 65, 153–162 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nikolski, N.K.: Operators, Functions, and Systems: An Easy Reading (Mathematical Surveys and Monographs). AMS, Providence (2002)Google Scholar
  21. 21.
    Ninnes, B., Hjalmarsson, H., Gustafsson, F.: The fundamental role of general orthogonal bases in system identification. IEEE Trans. Automat. Control 44, 1384–1407 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Peller, V.V.: Springer Monographs in Mathematics. Hankel operators and their applications. Springer, New York (2003)Google Scholar
  23. 23.
    Plonka, G., Pototskaia, V.: Sparse approximation by Prony’s method and AAK theory. Oberwolfach Rep. 33, 16–19 (2016).  https://doi.org/10.4171/OWR/2016/1627b Google Scholar
  24. 24.
    Plonka, G., Pototskaia, V.: Application of the AAK theory for sparse approximation of exponential sums, arXiv:1609.09603
  25. 25.
    Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitt. 37(2), 239–258 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pushnitski, A., Yafaev, D.: Sharp estimates for singular values of Hankel operators. Integr. Equ. Oper. Theory 83, 393–411 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pushnitski, A., Yafaev, D.: Asymptotics of Eigenvalues of Hankel operators. Int. Math. Res. Not. 22, 1186111886 (2015)zbMATHGoogle Scholar
  29. 29.
    Qian, T., Wang, Y.-B.: Adaptive Fourier series—a variation of a greedy algorithm. Adv. Comput. Math. 34, 279–293 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Qian, T., Zhang, L., Li, Z.: Algorithm of adaptive Fourier decomposition. IEEE Trans. Signal Process. 59(12), 5899–5906 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Roy, R., Kailath, T.: ESPRIT - estimation of signal parameters via rotational invariance techniques. In: Auslander, L., Grünbaum, F., Helton, J., Kailath, T., Khargoneka, P., Mitter, S. (eds.) Signal Processing, Part II, IMA, pp. 369–411. Springer, New York (1990)Google Scholar
  32. 32.
    Takenaka, S.: On the orthogonal functions and a new formula of interpolation. Jpn. J. Math. 2, 129–145 (1925)CrossRefzbMATHGoogle Scholar
  33. 33.
    Walsh, J.L.: American Mathematical Society Colloquium Publications. Interpolation and approximation by rational functions in the complex domain, vol. 20. American Mathematical Society, Providence (1956)Google Scholar
  34. 34.
    Widom, H.: Hankel matrices. Trans. Am. Math. Soc. 121(1), 1–35 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Young, N.: An Introduction to Hilbert Space. Cambridge University Press, Cambridge (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Numerical and Applied MathematicsGöttingen UniversityGöttingenGermany

Personalised recommendations