Skip to main content
Log in

Computation of Adaptive Fourier Series by Sparse Approximation of Exponential Sums

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the convergence of adaptive Fourier sums for real-valued \(2\pi \)-periodic functions. For this purpose, we approximate the sequence of classical Fourier coefficients by a short exponential sum with a pre-defined number of \(N+1\) terms. The obtained approximation can be interpreted as an adaptive N-th Fourier sum with respect to the orthogonal Takenaka-Malmquist basis. Using the theoretical results on rational approximation in Hardy spaces and on the decay of singular values of special infinite Hankel matrices, we show that adaptive Fourier sums can converge essentially faster than classical Fourier sums for a large class of functions. Further, we derive an algorithm to compute almost optimal adaptive Fourier sums. Our numerical results show that the significantly better convergence behavior of adaptive Fourier sums for optimally chosen basis elements can also be achieved in practice. For comparison, we also provide a greedy algorithm to determine an adaptive Fourier sum. This algorithm requires less computational effort but yields essentially slower convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adamjan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. Mat. Sb. 86, 34–75 (1971). (in Russian)

    MathSciNet  MATH  Google Scholar 

  2. Akhiezer, N.I.: Lectures on Approximation Theory, Nauka, Moscow 1965 (Russian). Dover Publications Inc, New York (1992)

    Google Scholar 

  3. Andersson, F., Carlsson, M., de Hoop, M.V.: Sparse approximation of functions using sums of exponentials and AAK theory. J. Approx. Theory 163, 213–248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckermann, B., Townsend, A.: On the singular values of matrices with displacement structure. SIAM J. Matrix. Anal. Appl. 38(4), 1227–1248 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berg, L.: Lineare Gleichungssysteme mit Bandstruktur. Carl Hanser, München/Wien (1986)

    MATH  Google Scholar 

  6. Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bray, H.E.: Functions of ecart fini. Amer. J. Math. 51(1), 149–164 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bultheel, A., Carrette, P.: Algebraic and spectral properties of generalized Toeplitz matrices. SIAM J. Control Optim. 41(5), 1413–1439 (2003)

    Article  MATH  Google Scholar 

  10. Chui, C.K., Chen, G.: Discrete \(H^{\infty }\) Optimization. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  11. Demmel, J.: Accurate singular value decomposition of structured matrices. SIAM J. Matrix Ana. Appl. 21(2), 562–580 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartman, P.: On completely continuous Hankel matrices. Proc. Amer. Math. Soc. 9, 862–866 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haut, T.S., Beylkin, G.: Fast and accurate con-eigenvalue algorithm for optimal rational approximations. SIAM J. Matrix Anal. Appl. 33(4), 1101–1125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heuberger, P.S.C., Van den Hof, P.M.J., Wahlberg, B.: Modelling and Identification with Rational Orthogonal Basis Functions. Springer, London (2005)

    Book  Google Scholar 

  15. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  16. Lanczos, C.: Discourse on Fourier Series. SIAM, Pathum Wan (1966)

    MATH  Google Scholar 

  17. Martínez-Avendaño, R.A., Rosenthal, Peter: An Introduction to Operators on the Hardy-Hilbert Space, Graduate Texts im Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  18. Meinguet, J.: A simplified presentation of the Adamjan-Arov-Krein approximation theory. In: Werner, H., Wuytack, L., Ng, E., Bünger, H.J. (eds.) Computational Aspects of Complex Analysis, vol. 102, pp. 217–248. NATO Advanced Study Institutes Series, Dordrecht (1983)

    Chapter  Google Scholar 

  19. Nehari, Z.: On bounded linear forms. Ann. Math. 65, 153–162 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolski, N.K.: Operators, Functions, and Systems: An Easy Reading (Mathematical Surveys and Monographs). AMS, Providence (2002)

    Google Scholar 

  21. Ninnes, B., Hjalmarsson, H., Gustafsson, F.: The fundamental role of general orthogonal bases in system identification. IEEE Trans. Automat. Control 44, 1384–1407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peller, V.V.: Springer Monographs in Mathematics. Hankel operators and their applications. Springer, New York (2003)

    Google Scholar 

  23. Plonka, G., Pototskaia, V.: Sparse approximation by Prony’s method and AAK theory. Oberwolfach Rep. 33, 16–19 (2016). https://doi.org/10.4171/OWR/2016/1627b

    Google Scholar 

  24. Plonka, G., Pototskaia, V.: Application of the AAK theory for sparse approximation of exponential sums, arXiv:1609.09603

  25. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitt. 37(2), 239–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pushnitski, A., Yafaev, D.: Sharp estimates for singular values of Hankel operators. Integr. Equ. Oper. Theory 83, 393–411 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pushnitski, A., Yafaev, D.: Asymptotics of Eigenvalues of Hankel operators. Int. Math. Res. Not. 22, 1186111886 (2015)

    MATH  Google Scholar 

  29. Qian, T., Wang, Y.-B.: Adaptive Fourier series—a variation of a greedy algorithm. Adv. Comput. Math. 34, 279–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qian, T., Zhang, L., Li, Z.: Algorithm of adaptive Fourier decomposition. IEEE Trans. Signal Process. 59(12), 5899–5906 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Roy, R., Kailath, T.: ESPRIT - estimation of signal parameters via rotational invariance techniques. In: Auslander, L., Grünbaum, F., Helton, J., Kailath, T., Khargoneka, P., Mitter, S. (eds.) Signal Processing, Part II, IMA, pp. 369–411. Springer, New York (1990)

    Google Scholar 

  32. Takenaka, S.: On the orthogonal functions and a new formula of interpolation. Jpn. J. Math. 2, 129–145 (1925)

    Article  MATH  Google Scholar 

  33. Walsh, J.L.: American Mathematical Society Colloquium Publications. Interpolation and approximation by rational functions in the complex domain, vol. 20. American Mathematical Society, Providence (1956)

    Google Scholar 

  34. Widom, H.: Hankel matrices. Trans. Am. Math. Soc. 121(1), 1–35 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  35. Young, N.: An Introduction to Hilbert Space. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for valuable comments to improve the manuscript. The authors gratefully acknowledge the funding of this work by the DFG in the framework of the GRK 2088 and the project PL 170/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlind Plonka.

Additional information

Communicated by Massimo Fornasier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plonka, G., Pototskaia, V. Computation of Adaptive Fourier Series by Sparse Approximation of Exponential Sums. J Fourier Anal Appl 25, 1580–1608 (2019). https://doi.org/10.1007/s00041-018-9635-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9635-1

Keywords

Mathematics Subject Classification

Navigation