On Lebesgue Integrability of Fourier Transforms in Amalgam Spaces
- 67 Downloads
Abstract
Let f be an element of the subspace \((L^{q},l^{p})^{\alpha }({\mathbb {R}}^d)\) (\(1\le q \le \alpha \le p \le 2 \)) of the Wiener amalgam space \((L^{q},l^{p})({\mathbb {R}}^{d})\). It is well-known that the Fourier transform \(\widehat{f}\) of f belongs to \((L^{p'},l^{q'})^{\alpha '}({\mathbb {R}}^d)\) where \(p'\), \(q'\) and \(\alpha '\) are the conjugate exponents of p, q and \(\alpha \) respectively. We give sufficient conditions, in terms of a modulus of continuity of f, for \(\widehat{f}\) to be in a Lebesgue space \(L^{\beta }({\mathbb {R}}^{d})\) or in an amalgam space \((L^{p'},l^{s})^{\beta }({\mathbb {R}}^d)\) other than \((L^{p'},l^{q'})^{\alpha '}({\mathbb {R}}^d)\). As an application, we obtain a sufficient condition for the solvability in \([L^{2}({\mathbb {R}}^d)]^d\) of the equation \(\hbox {div}{F}=f\) .
Keywords
Fourier transform Modulus of continuity Amalgam spacesMathematics Subject Classification
Primary 42B10 Secondary 42B35Notes
Acknowledgements
The authors thank the referee for valuable remarks that improved the presentation.
References
- 1.Bertrandias, J.P., Dupuis, C.: Transformation de Fourier sur les espaces \(l^{p}(L^{p^{\prime }})\). Ann. Inst. Fourier 29, 189–206 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bertrandias, J.P., Datry, C., Dupuis, C.: Unions et intersections d’espaces \(L^{p}\) invariantes par translation et convolution. Ann. Inst. Fourier 28(2), 53–84 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Boman, J.: Equivalence of generalized moduli of continuity. Ark. Math. 18, 73–100 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Bray, W.O.: Growth and integrability of Fourier transforms on euclidean space. J. Fourier Anal. Appl. 20, 1234–1256 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Ditzian, Z.: Relating smoothness to expressions involving Fourier coefficients or to a Fourier transform. J. Approx. Theory 164, 1369–1389 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Dosso, M., Fofana, I., Sanogo, M.: On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals. Ann. Polon. Math. 108(2), 133–153 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Feichtinger, H.G.: Wiener Amalgams over Euclidean Spaces and Some of Their Applications, Function Spaces (Edwarsville IL). Lectures Notes in Pure and Applied Mathematics, vol. 136, pp. 123–137. Marcel Dekker, New York (1990)Google Scholar
- 8.Feuto, J.: Norm inequalities in some subspaces of Morrey space. Ann. Math. Blaise Pascal 21(2), 21–37 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Fofana, I.: Espace \((L^{q},l^{p})^{\alpha }({\mathbb{R}}^d)\) : Espace de Fonctions à Moyenne Fractionnaire Intégrable. Thèse d’Etat Université d’Abidjan-Cocody. http://greenstone.refer.bf/collect/thef/index/assoc/HASH6a39.dir/CS_02767.pdf (1995)
- 10.Fofana, I.: Transformation de Fourier dans \((L^{q}, l^{p})^{\alpha }\) and \(M^{p,\alpha }\). Afrika Mat. 3(5), 53–76 (1995)MathSciNetGoogle Scholar
- 11.Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, Hoboken (1999)zbMATHGoogle Scholar
- 12.Fournier, J.J.F.: On the Hausdorff-Young theorem for amalgams. Monatsh. Math. 95, 117–135 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Fournier, J.J.F.: Local and global properties of functions and their Fourier transforms. Tôkoku Math. J. 49, 115–131 (1997)MathSciNetzbMATHGoogle Scholar
- 14.Fournier, J.J.F., Stewart, J.: Amalgams of \(L^{p}\) and \(l^{q}\). Bull. Ann. Math. Soc. 13, 1–21 (1985)CrossRefGoogle Scholar
- 15.Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)Google Scholar
- 16.Heil, C.: An introduction to weighted Wiener amalgams. In: Krishna, M., Radha, R., Thangwelu, S. (eds.) Wavelets and Their Applications, pp. 183–216. Allied Publishers Private Limited, New Delhi (2003)Google Scholar
- 17.Holland, F.: Harmonic analysis on amalgams \(L^{p}\) and \(l^{q}\). J. Lond. Math. Soc. 2(10), 295–305 (1975)CrossRefzbMATHGoogle Scholar
- 18.Kpata, B.A., Fofana, I.: Isomorphism between Sobolev spaces and Bessel potential spaces in the setting of Wiener amalgam spaces. Commun. Math. Anal. 16(2), 57–73 (2014)MathSciNetzbMATHGoogle Scholar
- 19.Phuc, N.C., Torres, M.: Characterizations of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57(4), 1573–1597 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Sanogo, M., Fofana, I.: Fourier transform and compactness in \((L^{q}, l^{p})^{\alpha }\) and \(M^{p,\alpha }\) spaces. Commun. Math. Anal. 11(2), 133–153 (2011)zbMATHGoogle Scholar
- 21.Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
- 22.Stewart, J.: Fourier transforms of unbounded measures. Can. J. Math. 31, 1281–1292 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Szeptycki, P.: On functions and measures whose Fourier transforms are functions. Math. Ann. 179, 31–41 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Szeptycki, P.: On some problems related to the extended domain of the Fourier transform. Rochy Mt. J. Math. 10, 99–103 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Titchmarsh, E.C.: Introduction to The Theory of Fourier Integrals, 2nd edn. The Clarendon Press, Oxford (1948)Google Scholar
- 26.Torrès, M.: De Squire, Amalgams of \(L^{p}\) and \(l^{p}\). PhD thesis, McMaster University (1984)Google Scholar