Journal of Fourier Analysis and Applications

, Volume 25, Issue 1, pp 108–130 | Cite as

Geometric Separation in \(\mathbb {R}^3\)

  • Kanghui Guo
  • Demetrio LabateEmail author


The geometric separation problem, initially posed by Donoho and Kutyniok (Commun Pure Appl Math 66:1–47, 2013), aims to separate a distribution containing a non-trivial superposition of point and curvilinear singularities into its distinct geometric constituents. The solution proposed in Donoho and Kutyniok  (2013) considers expansions with respect to a combined wavelet-curvelet dictionary and applies an \(\ell ^1\)-norm minimization over the expansion coefficients to achieve separation asymptotically at fine scales. However, the original proof of this result uses a heavy machinery relying on sparse representations of Fourier integral operators which does not extend directly to the 3D setting. In this paper, we extend the geometric separation result to the 3D setting using a novel and simpler argument which relies in part on techniques developed by the authors for the shearlet-based analysis of curvilinear edges. Our new result also yields a significantly simpler proof of the original 2D geometric separation problem and extends a prior result by the authors which was limited to piecewise linear singularities.


Analysis of singularities Cluster coherence Geometric separation \(\ell ^1\) minimization Shearlets Sparse representations Wavelets 

Mathematics Subject Classification

42C15 42C40 



DL acknowledges support from NSF grant DMS 1720487, GEAR 113491 and by a grant from the Simon Foundation (422488).


  1. 1.
    Candès, E.J., Donoho, D.L.: Ridgelets: the key to high dimensional intermittency? Philos. Trans. R. Soc. Lond. A 357, 2495–2509 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with C 2 singularities. Commun. Pure Appl. Math. 56, 219–266 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43, 129–159 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coifman, R. R., Wickerhauser. M. V.: Wavelets and adapted waveform analysis. A toolkit for signal processing and numerical analysis, Different perspectives on wavelets (San Antonio, TX, 1993), 119–153. In: Proceedings of Symposia in Applied Mathematics, Vol 47, American Mathematical Society, Providence, RI, (1993)Google Scholar
  6. 6.
    Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell ^1\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59, 97–829 (2006)MathSciNetGoogle Scholar
  7. 7.
    Donoho, D., Kutyniok, G.: Microlocal analysis of the geometric separation problem. Commun. Pure Appl. Math. 66, 1–47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Easley, G.R., Labate, D., Lim, W.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25, 25–46 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gribonval, R., Bacry, E.: Harmonic decomposition of audio signals with matching pursuit. IEEE Trans. Signal Proc. 51, 1001–111 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39, 298–318 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, K., Labate, D.: Characterization and analysis of edges using the continuous shearlet transform. SIAM J. Imaging Sci. 2, 959–986 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Guo, K., Labate, D.: Analysis and detection of surface discontinuities using the 3D continuous shearlet transform. Appl. Comput. Harmon. Anal. 30, 231–242 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guo, K., Labate, D.: Optimally sparse representations of 3D data with C 2 surface singularities using Parseval frames of shearlets. SIAM J. Math. Anal. 44, 851–886 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guo, K., Labate, D.: Characterization of piecewise smooth surfaces using the 3D continuous shearlet transform. J. Fourier Anal. Appl. 18, 488–516 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guo, K., Labate, D.: The construction of smooth Parseval frames of shearlets. Math. Model. Nat. Phenom. 8, 82–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guo, K., Labate, D.: Geometric separation of singularities using combined multiscale dictionaries. J. Fourier Anal. Appl. 21, 667–693 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guo, K., Labate, D.: Microlocal analysis of edge flatness through directional multiscale representations. Adv. Comput. Math. 43, 295–318 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Guo, K., Labate, D., Lim, W.: Edge analysis and identification using the continuous shearlet transform. Appl. Comput. Harmon. Anal. 27, 24–46 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Guo, K., Houska, R., Labate, D.: Microlocal analysis of singularities from directional multiscale representations. In: Approximation Theory XIV (San Antonio, pp. 173–196). Springer, Charm. Proceedings in Mathematics & Statistics 83, 2014 (2013)Google Scholar
  20. 20.
    Hernandez, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton, FL (1996)CrossRefzbMATHGoogle Scholar
  21. 21.
    King, E., Kutyniok, G., Zhuang, X.: Analysis of inpainting via clustered sparsity and microlocal analysis. J. Math. Imaging Vis. 48(2), 205–234 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kutyniok, G.: Geometric separation by single-pass alternating thresholding. Appl. Comput. Harmon. Anal. 36, 23–50 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math. Soc. 361, 2719–2754 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kutyniok, G., Petersen, P.: Classification of edges using compactly supported shearlets. Appl. Comput. Harmon. Anal. 42, 245–293 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kutyniok, G., Lemvig, J., Lim, W.-Q.: Optimally sparse approximations of 3D functions by compactly supported shearlet frames. SIAM J. Math. Anal. 44, 2962–3017 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kutyniok, G., Shahram, M., Zhuang, X.: ShearLab: a rational design of a digital parabolic scaling. SIAM J. Imaging Sci. 5, 1291–1332 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Labate, D., Lim, W., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. SPIE Proc. 5914, 254–262 (2005)Google Scholar
  28. 28.
    Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Proc. 41, 3397–3415 (1993)CrossRefzbMATHGoogle Scholar
  29. 29.
    Meyer, F.G., Averbuch, A., Coifman, R.R.: Multi-layered image representation: application to image compression. IEEE Trans. Image Process. 11, 1072–1080 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Starck, J.-L., Nguyen, M., Murtagh, F.: Wavelets and curvelets for image deconvolution: a combined approach. Signal Process. 83, 2279–2283 (2003)CrossRefzbMATHGoogle Scholar
  31. 31.
    Starck, J.-L., Elad, M., Donoho, D.L.: Redundant multiscale transforms and their application for morphological component analysis. Adv. Imaging Electron Phys. 132, 287–348 (2004)CrossRefGoogle Scholar
  32. 32.
    Starck, J.-L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representation and a variational approach. IEEE Trans. Image Process. 14, 1570–1582 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  34. 34.
    Strichartz, R.S.: A guide to distribution theory and Fourier transforms. World Scientific Publishing, Singapore (2003)CrossRefzbMATHGoogle Scholar
  35. 35.
    Teschke, G.: Multi-frame representations in linear inverse problems with mixed multi-constraints. Appl. Comput. Harmon. Anal. 22, 43–60 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsMissouri State UniversitySpringfieldUSA
  2. 2.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations