System Representations for the Paley–Wiener Space \(\mathcal {PW}_{\pi }^2\)



In this paper we study the approximation of stable linear time-invariant systems for the Paley–Wiener space \(\mathcal {PW}_{\pi }^2\), i.e., the set of bandlimited functions with finite \(L^2\)-norm, by convolution sums. It is possible to use either, the convolution sum where the time variable is in the argument of the bandlimited impulse response, or the convolution sum where the time variable is in the argument of the function, as an approximation process. In addition to the pointwise and uniform convergence behavior, the convergence behavior in the norm of the considered function space, i.e. the \(L^2\)-norm in our case, is important. While it is well-known that both convolution sums converge uniformly on the whole real axis, the \(L^2\)-norm of the second convolution sum can be divergent for certain functions and systems. We show that the there exist an infinite dimensional closed subspace of functions and an infinite dimensional closed subspace of systems, such that for any pair of function and system from these two sets, we have norm divergence.


Paley–Wiener space Bandlimited function Linear time-invariant system Convolution sum Divergence \(L^2\)-norm 

Mathematics Subject Classification

94A12 94A20 15A03 


  1. 1.
    Aron, R.M., Bernal-González, L., Pellegrino, D.M., Seoane-Sepúlveda, J.B.: Lineability: The Search for Linearity in Mathematics. Monographs and Research Notes in Mathematics, vol. 14. CRC Press, Boca Raton (2015)CrossRefMATHGoogle Scholar
  2. 2.
    Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. 51(1), 71–130 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boche, H., Farrell, B.: Strong divergence of reconstruction procedures for the Paley-Wiener space \({PW}_\pi ^1\) and the Hardy space \({H}^1\). J. Approx. Theory 183, 98–117 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boche, H., Mönich, U.J.: Banach–Steinhaus theory revisited: lineability and spaceability. J. Approx. Theory 213, 50–69 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Boche, H., Mönich, U.J.: Signal and system spaces with non-convergent sampling representation. In: Proceedings of European Signal Processing Conference (EUSIPCO), pp. 2131–2135 (2016)Google Scholar
  6. 6.
    Boche, H., Mönich, U.J., Tampubolon, E.: Strong divergence of the Shannon sampling series for an infinite dimensional signal space. In: Proceedings of the 2016 IEEE International Symposium on Information Theory, pp. 2878–2882 (2016)Google Scholar
  7. 7.
    Butzer, P.L., Splettstößer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Dtsch. Math. Ver. 90(1), 1–70 (1988)MathSciNetMATHGoogle Scholar
  8. 8.
    Butzer, P.L., Schmeisser, G., Stens, R.L.: Shannon’s sampling theorem for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivative–the aliasing error involved by their extensions from bandlimited to non-bandlimited signals. Entropy 14(11), 2192–2226 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Diestel, J.: Sequences and Series in Banach Spaces, vol. 92. Springer, Berlin (2012)Google Scholar
  10. 10.
    Fonf, V.P., Gurariy, V.I., Kadets, M.I.: An infinite dimensional subspace of \(C[0,1]\) consisting of nowhere differentiable functions. C. R. Acad. Bulg. Sci. 52(11–12), 13–16 (1999)MathSciNetMATHGoogle Scholar
  11. 11.
    Gurariy, V.I.: Subspaces and bases in spaces of continuous functions. Dokl. Akad. Nauk SSSR 167, 971–973 (1966)MathSciNetGoogle Scholar
  12. 12.
    Habib, M.K.: Digital representations of operators on band-limited random signals. IEEE Trans. Inf. Theory 47(1), 173–177 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. 12(1), 45–89 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  15. 15.
    Jerri, A.J.: The Shannon sampling theorem-its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)CrossRefMATHGoogle Scholar
  16. 16.
    Kramer, H.P.: The digital form of operators on band-limited functions. J. Math. Anal. Appl. 44(2), 275–287 (1973)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Marvasti, E. (ed.): Nonuniform Sampling: Theory and Practice. Kluwer Academic, Dordrecht (2001)MATHGoogle Scholar
  18. 18.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2009)MATHGoogle Scholar
  19. 19.
    Papoulis, A.: Generalized sampling expansion. IEEE Trans. Circ. Syst. 24(11), 652–654 (1977)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Stens, R.L.: A unified approach to sampling theorems for derivatives and Hilbert transforms. Signal Process. 5, 139–151 (1983)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zygmund, A.: Trigonometric Series, vol. I, 3rd edn. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Lehrstuhl für Theoretische InformationstechnikTechnische Universität MünchenMunichGermany

Personalised recommendations