Advertisement

Journal of Fourier Analysis and Applications

, Volume 23, Issue 6, pp 1480–1494 | Cite as

Reconstructing Real-Valued Functions from Unsigned Coefficients with Respect to Wavelet and Other Frames

  • Rima AlaifariEmail author
  • Ingrid Daubechies
  • Philipp Grohs
  • Gaurav Thakur
Article

Abstract

In this paper we consider the following problem of phase retrieval: given a collection of real-valued band-limited functions \(\{\psi _{\lambda }\}_{\lambda \in \Lambda }\subset L^2(\mathbb {R}^d)\) that constitutes a semi-discrete frame, we ask whether any real-valued function \(f \in L^2(\mathbb {R}^d)\) can be uniquely recovered from its unsigned convolutions \({\{|f *\psi _\lambda |\}_{\lambda \in \Lambda }}\). We find that under some mild assumptions on the semi-discrete frame and if f has exponential decay at \(\infty \), it suffices to know \(|f *\psi _\lambda |\) on suitably fine lattices to uniquely determine f (up to a global sign factor). We further establish a local stability property of our reconstruction problem. Finally, for two concrete examples of a (discrete) frame of \(L^2(\mathbb {R}^d)\), \(d=1,2\), we show that through sufficient oversampling one obtains a frame such that any real-valued function with exponential decay can be uniquely recovered from its unsigned frame coefficients.

Keywords

Phase retrieval Semi-discrete frames Injectivity Stability Sampling 

Mathematics Subject Classification

42C15 49N45 94A12 94A20 

Notes

Acknowledgements

R.A. is supported by an ETH Postdoctoral Fellowship. R.A., I.D. and P.G. would like to thank the Mathematisches Forschungsinstitut Oberwolfach (MFO). The authors also give their thanks to the anonymous referee for the detailed and useful comments and for inspiring our example given after Proposition 1.

References

  1. 1.
    Akutowicz, E.J.: On the determination of the phase of a Fourier integral, I. Trans. Am. Math. Soc. 83, 179–192 (1956)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alaifari, R., Grohs, P.: Phase Retrieval in the General Setting of Continuous Frames for Banach Spaces (2016). arXiv:1604.03163
  3. 3.
    Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imaging Sci. 7(1), 35–66 (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bodmann, B.G., Hammen, N.: Algorithms and error bounds for noisy phase retrieval with low-redundancy frames. Appl. Comput. Harmon. Anal. (2016). doi: 10.1016/j.acha.2016.03.005
  7. 7.
    Cahill, J. Casazza, P.G., Daubechies, I.: Phase retrieval in infinite–dimensional Hilbert spaces. arXiv:1601.06411, 2016
  8. 8.
    Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \(C^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chen, Y., Cheng, C., Sun, Q., Wang, H.: Phase Retrieval of Real-Valued Signals in a Shift-Invariant Space. arXiv preprintarXiv:1603.01592 (2016)Google Scholar
  11. 11.
    Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal. 23(3), 368–387 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Springer, Berlin (2013)zbMATHGoogle Scholar
  13. 13.
    Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M.: \(\alpha \)-Molecules. arXiv preprintarXiv:1407.4424 (2014)Google Scholar
  14. 14.
    Hurt, N.E.: Phase Retrieval and Zero Crossings: Mathematical Methods in Image Reconstruction, vol. 52. Springer, Berlin (2001)zbMATHGoogle Scholar
  15. 15.
    Klibanov, M.V., Sacks, P.E., Tikhonravov, A.V.: The phase retrieval problem. Inverse Probl. 11(1), 1 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mallat, S., Waldspurger, I.: Phase Retrieval for the Cauchy Wavelet Transform. J. Fourier Anal. Appl. 21(6), 1251–1309 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Meyer, Y.: Wavelets and Operators, vol. 1. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  18. 18.
    Thakur, G.S.: Reconstruction of bandlimited functions from unsigned samples. J. Fourier Anal. Appl. 17(4), 720–732 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Thakur, G.S.: Three Analytic Problems in Signal Sampling and Reconstruction Theory. PhD thesis, Princeton University (2011)Google Scholar
  20. 20.
    Walther, A.: The question of phase retrieval in optics. J. Mod. Opt. 10(1), 41–49 (1963)MathSciNetGoogle Scholar
  21. 21.
    Wloka, J.: Funktionalanalysis und Anwendungen. De Gruyter, Berlin (1971)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rima Alaifari
    • 1
    Email author
  • Ingrid Daubechies
    • 2
  • Philipp Grohs
    • 1
    • 3
  • Gaurav Thakur
    • 4
  1. 1.Department of MathematicsETH ZürichZurichSwitzerland
  2. 2.Department of MathematicsDuke UniversityDurhamUSA
  3. 3.Faculty of MathematicsUniversity of ViennaViennaAustria
  4. 4.INTECH Investment ManagementPrincetonUSA

Personalised recommendations