Journal of Fourier Analysis and Applications

, Volume 23, Issue 6, pp 1408–1425 | Cite as

\(L^p\)-Estimates for Singular Oscillatory Integral Operators

  • Per Sjölin
Open Access


In this paper we study singular oscillatory integrals with a nonlinear phase function. We prove estimates of \(L^2 \rightarrow L^2\) and \(L^p\rightarrow L^p\) type.


Singular integral Oscillatory integral Nonlinear phase function 

Mathematics Subject Classification


1 Introduction

Let K denote a singular kernel in \({\mathbb R}^n\). Singular integral operators T, defined by \( T f(x) = \int \limits _{{\mathbb R}^n} K(x-y) f(y) dy\), \(x\in {\mathbb R}^n\), \(f\in C_0^\infty ({\mathbb R}^n)\), have been studied for a very long time. Since approximately 1970 there has also been a lot of interest in oscillatory integral operators. The following theorem describes a typical result.

Theorem 1.1

(see Stein [6], p. 377) Let \(\psi _1\in C_0^\infty ({\mathbb R}^n \times {\mathbb R}^n)\) and \(\lambda >0\) and let \(\Phi \) be real-valued and smooth. Set
$$\begin{aligned} \mathcal {U}_\lambda f(x) = \int \limits _{{\mathbb R}^n} e^{i\lambda \Phi (x,\xi )} \psi _1 (x,\xi ) f(x) dx, \ \xi \in {\mathbb R}^n, \end{aligned}$$
and assume that \(\mathrm {det}\left( \frac{\partial ^2 \Phi }{\partial x_i \partial \xi _j} \right) \ne 0\) on \(\mathrm {supp} \psi _1\). Then one has
$$\begin{aligned} || \mathcal {U}_\lambda f||_{L^2 ({\mathbb R}^n)} \le C \lambda ^{-n/2} ||f ||_{L^2 ({\mathbb R}^n)}. \end{aligned}$$

We shall here consider singular oscillatory integral operators, that is operators defined by integrals containing both a singular kernel and an oscillating factor. Operators of this type have been much studied in the theory of convergence of Fourier series and also in for instance Phong and Stein [4]. We shall continue this study.

Let \(\psi _0 \in C_0^\infty ({\mathbb R}^n \times {\mathbb R}^{n-1})\) and \(n\ge 2\). For \(f\in L^2({\mathbb R}^{n-1})\) set
$$\begin{aligned} T_\lambda f(x) = \int \limits _{{\mathbb R}^{n-1}} e^{i\lambda |x-(y',0)|^\gamma } \psi _0 (x,y') K \big (x-(y',0) \big ) f(y') dy' \end{aligned}$$
for \(x\in {\mathbb R}^n\), \(\gamma >0\), and \(\lambda \ge 2\). Here for \(\gamma >1\) we set
$$\begin{aligned} K(z) = |z|^{-(n-m-1)}, \ z\in {\mathbb R}^n \setminus \{0\}, \end{aligned}$$
and for \(0<\gamma \le 1\) we set
$$\begin{aligned} K(z) = |z|^{-(n-m-1)} \omega (z), \ z\in {\mathbb R}^n \setminus \{0\}, \end{aligned}$$
where \(\omega \in C^\infty ({\mathbb R}^n \setminus \{0\})\), \(\omega \) is homogeneous of degree 0, and \(\omega (z) = 0\) for all z with \(|z|=1\) and \(|z_n|\le \varepsilon _0\) for some given \(\varepsilon _0 >0\). We also assume that \(0<m<n-1\).

We shall study the norm of \(T_\lambda \) as an operator from \(L^p({\mathbb R}^{n-1})\) to \(L^p({\mathbb R}^n)\) and denote this norm by \(|| T_\lambda ||_p\). In Aleksanyan et al. [1] the following theorem was proved.

Theorem 1.2

Set \(\alpha =(n-1)/2 \) and assume \(\gamma \ge 1\). Then one has
$$\begin{aligned} || T_\lambda ||_2 \le {\left\{ \begin{array}{ll} C \lambda ^{-(m+1/2)/\gamma }, &{} m<\gamma \alpha - 1/2 , \\ C \lambda ^{-\alpha } \log \lambda , &{} m=\gamma \alpha - 1/2 , \\ C \lambda ^{-\alpha }, &{} m>\gamma \alpha - 1/2 . \end{array}\right. } \end{aligned}$$

The above choice of phase function is partially motivated by an application to an inhomogeneous Helmholtz equation where we give estimates for solutions. In this case we take \(\gamma =1\) (see [1], p. 544). It is also possible to use \(T_\lambda \) to give \(L^p\)-estimates for convolution operators. This will be studied in a forthcoming paper.

In [1] it is also proved that \(||T_\lambda ||_2 \ge c \lambda ^{-(m+1/2)/\gamma } \) for \(\gamma >1\), where c denotes a positive constant. We shall here prove that this also holds for \(\gamma =1\) and that \(|| T_\lambda ||_2 \ge c \lambda ^{-\alpha }\) for \(\gamma \ge 1\). It follows that the results in Theorem 1.2 are essentially sharp.

In this paper we shall first study the case \(n=2\) and \(1<p<\infty \). We have the following theorem.

Theorem 1.3

Assume \(n=2\) and \(0<\gamma \le 1\). Then \(||T_\lambda ||_2 \le C \lambda ^{-1/2}\), and for \(2<p\le 4\) one has
$$\begin{aligned} || T_\lambda ||_p \le {\left\{ \begin{array}{ll} C \lambda ^{-(1/p+m)/\gamma }, &{} 1/p+m<\gamma /2 , \\ C_\varepsilon \lambda ^{\varepsilon - 1/2} , &{} 1/p+m \ge \gamma /2 , \end{array}\right. } \end{aligned}$$
where \(\varepsilon \) denotes an arbitrary positive number. Also set \(\beta (p) = 1-1/p\) for \(1<p<2\), and \(\beta (p)= 2/p\) for \(4<p<\infty \). For \(1<p<2\) and \(4<p<\infty \) one has
$$\begin{aligned} || T_\lambda ||_p \le {\left\{ \begin{array}{ll} C \lambda ^{-(1/p+m)/\gamma }, &{} 1/p+m<\gamma \beta (p) , \\ C \lambda ^{- \beta (p) } \log \lambda , &{} 1/p+m = \gamma \beta (p), \\ C \lambda ^{-\beta (p)} , &{}1/p+m > \gamma \beta (p) . \end{array}\right. } \end{aligned}$$
We shall also study the sharpness of the estimates in Theorem 1.3. We shall then estimate the operator \(S_\lambda \) given by
$$\begin{aligned} S_\lambda f(x) = \int \limits _{{\mathbb R}^{n-1}} e^{i\lambda |x-y|^\gamma } \psi _0(x,y) K(x-y) f(y) dy, \ x\in {\mathbb R}^{n-1}, \end{aligned}$$
where \(n\ge 2\), \(\psi _0 \in C_0^\infty ({\mathbb R}^{n-1} \times {\mathbb R}^{n-1})\), and \(K(z) = |z|^{-(n-m-1)}\), \(z\in {\mathbb R}^{n-1} \setminus \{0\}\). We let \(||S_\lambda ||_p\) denote the norm of \(S_\lambda \) as an operator from \(L^p({\mathbb R}^{n-1})\) to \(L^p({\mathbb R}^{n-1})\). We shall prove the following theorem.

Theorem 1.4

Assume \(n\ge 2\), \(0<m<n-1\), \(\gamma >0\), and \(\gamma \ne 1\). Then
$$\begin{aligned} || S_\lambda ||_2 \le {\left\{ \begin{array}{ll} C \lambda ^{- m/ \gamma }, &{} m<\gamma \alpha , \\ C \lambda ^{- \alpha } \log \lambda , &{} m = \gamma \alpha , \\ C \lambda ^{-\alpha } , &{} m > \gamma \alpha , \end{array}\right. } \end{aligned}$$
where \(\alpha = (n-1)/2\). Here the constant C depends on n, m, and \(\gamma \).
We shall point out a relation between the operators \(T_\lambda \) and \(S_\lambda \). We choose \(\gamma >1\) and take \(K(z) = |z|^{-(n-m-1)}\), \(z \in {\mathbb R}^n\setminus \{0\}\), and let \(T_\lambda \) be defined as above. Then setting \(x=(x', x_n)\), where \(x'=(x_1,x_2,\ldots ,x_{n-1})\) we obtain
$$\begin{aligned} T_\lambda f(x', 0) = \int \limits _{{\mathbb R}^{n-1}} e^{ i\lambda |x'-y'|^\gamma } \psi _0 (x',0,y') K(x' - y', 0) f(y') dy', \end{aligned}$$
that is we obtain an operator of type \(S_\lambda \). The reason for introducing the homogeneous function \(\omega \) in the above definition of \(T_\lambda \) for \(0<\gamma \le 1\) is that we want certain determinant conditions to be satisfied. This is discussed in [1, p. 539], and in this paper after the proof of Lemma 2.2.
We shall also make some remarks on an operator which is somewhat similar to \(S_\lambda \). Set
$$\begin{aligned} L(x) = \frac{e^{i |x|^a}}{|x|^\alpha }, \ \ x\in {\mathbb R}^{n} \setminus \{0\}, \end{aligned}$$
where \(a>0\), \(a\ne 1\), and \(\alpha < n\). Then L belongs to the space \(\mathcal {S}' ({\mathbb R}^n)\) of tempered distributions and we set
$$\begin{aligned} T f = L\star f, \ \ f\in C_0^\infty ({\mathbb R}^n). \end{aligned}$$
We say that the operator T is bounded on \(L^p({\mathbb R}^n)\) if
$$\begin{aligned} || T f ||_p \le C_p || f||_p, \ \ f\in C_0^\infty ({\mathbb R}^n). \end{aligned}$$
In Sjölin [5] the following theorem is proved.

Theorem 1.5

If \(\alpha \ge n (1- a/2)\) set \(p_0 = n a /(na- n +\alpha ) \). Then T is bounded on \(L^p({\mathbb R}^n)\) if and only if \(p_0 \le p \le p_0'\). If \(\alpha < n(1-a/2)\) then T is not bounded on any \(L^p({\mathbb R}^n)\), \(1\le p \le \infty \).

We finally remark that Theorem 1.1 is due to Hörmander.

In Sect. 2 we shall give the proofs of Theorems 1.3 and 1.4. In Sect. 3 we shall discuss the sharpness of the results in these theorems.

2 Proofs of Theorems 1.3 and 1.4

We shall apply the following theorem.

Theorem 2.1

(see Hörmander [3], p. 3) Let \(\psi _1\in C_0^\infty ({\mathbb R}^3)\), let \(\varphi \in C^\infty ({\mathbb R}^3)\) be real-valued, and assume that the determinant
$$\begin{aligned} \mathcal {J} =\left| \begin{array}{cc} \varphi _{xt} &{} \varphi _{yt} \\ \varphi _{xtt} &{} \varphi _{ytt} \end{array} \right| \ne 0 \end{aligned}$$
on \(\mathrm {supp} \psi _1\). Here \(\varphi = \varphi (x,y,t)\) and \(\varphi _{xt} = \frac{\partial ^2 \varphi }{\partial x \partial t}\) etc. Set
$$\begin{aligned} \mathcal {U}_N f (x,y) =\int \limits _{\mathbb R}e^{iN \varphi (x,y,t)} \psi _1(x,y,t) f(t) dt, \ N\ge 1, \end{aligned}$$
for \(f\in L^1({\mathbb R})\) and \((x,y)\in {\mathbb R}^2\). It follows that
$$\begin{aligned} || \mathcal {U}_N f||_{L^q({\mathbb R}^2)} \le C N^{-2/q} (q/(q-4))^{1/4} ||f||_{L^r({\mathbb R})} \end{aligned}$$
if \(q>4\) and \(3/q + 1/r=1\).

We shall need an estimate of the norm of \(\mathcal {U}_N\) as an operator from \(L^p({\mathbb R})\) to \(L^p({\mathbb R}^2)\). We denote this norm by \(||\mathcal {U}_N||_p\). An application of Theorem 2.1 will give the inequalities in the following lemma.

Lemma 2.2

Let \(\mathcal {U}_N\) be defined as in Theorem 2.1. Then one has
$$\begin{aligned} ||\mathcal {U}_N ||_p \le C N^{-\beta (p)}, \ 1<p<\infty , \end{aligned}$$
$$\begin{aligned} \beta (p)= {\left\{ \begin{array}{ll} 1-1/p, &{} 1<p\le 2 , \\ 1/2 - \varepsilon , &{} 2<p\le 4 , \\ 2/p, &{} 4<p<\infty . \end{array}\right. } \end{aligned}$$
Here \(\varepsilon \) is an arbitrary positive number and C depends on \(\varphi \) and p, and in the case \(2<p\le 4\), also on \(\varepsilon \).


Assume that \(\mathrm {supp} \psi _1 \subset B_2 \times B_1\), where \(B_1\) is a ball in \({\mathbb R}\) and \(B_2\) a ball in \({\mathbb R}^2\). We then have \(\mathcal {U}_N f = \mathcal {U}_N (\mu f)\) if \(\mu \in C_0^\infty ({\mathbb R})\) and \(\mu (t) =1\) for \(t\in B_1\). Now take \(q>4\) and assume that \(3/q + 1/r =1\). It follows that \(1<r<4\) and using Hölder’s inequality twice and Theorem 2.1 we obtain
$$\begin{aligned} || \mathcal {U}_N f ||_4 \le C || \mathcal {U}_N f ||_q = C || \mathcal {U}_N(\mu f) ||_q&\le \\ C N^{-2/q} || \mu f||_r&\le C N^{-2/q} || \mu f||_4 \le C N^{-2/q} ||f ||_4. \end{aligned}$$
$$\begin{aligned} ||\mathcal {U}_N f ||_4 \le C N^{\varepsilon - 1/2} ||f ||_4 \end{aligned}$$
for every \(\varepsilon >0\), where the constant depends on \(\varepsilon \). Then we shall obtain an \(L^2\)-estimate for the operator \(\mathcal {U}_N\). From the condition on \(\mathcal {J}\) in Theorem 2.1 it follows that there exists a number \(\delta _0 >0\) such that
$$\begin{aligned} \delta _0 \le |\mathcal {J} | \le C_0(| \varphi _{xt} | +|\varphi _{yt}| ) \end{aligned}$$
on \(\mathrm {supp} \psi _1\), where \(C_0\) depends on \(\varphi \).
Choose \(\mu _j \in C_0^\infty ({\mathbb R}^3)\), \(j=2,3,\ldots ,M\), such that \(\sum \limits _{2}^M \mu _j(x,y,t) = 1\) for \((x,y,t)\in Q\) and each \(\mu _j\) has support in a small cube. Here Q is a cube in \({\mathbb R}^3\) with center at the origin and \(\mathrm {supp}\psi _1 \subset Q \). It follows that
$$\begin{aligned} \psi _1 = \sum \limits _{2}^M \psi _1 \mu _j = \sum \limits _{2}^M \psi _j, \end{aligned}$$
where \(\psi _j = \psi _1 \mu _j\). Setting
$$\begin{aligned} \mathcal {U}_N^{(j)} f (x,y) = \int \limits _{\mathbb R}e^{i N \varphi (x,y,t)} \psi _j (x,y,t) f(t) dt \end{aligned}$$
we have
$$\begin{aligned} \mathcal {U}_N = \sum \limits _{j=2}^M \mathcal {U}_N^{(j)} \end{aligned}$$
and shall estimate each \(\mathcal {U}_N^{(j)}\).

If \((x_0, y_0, t_0) \in \mathrm {supp} \psi _j\) then \((x_0, y_0, t_0) \in \mathrm {supp} \psi _1\) and \(|\varphi _{xt} | \ge \delta /2\) or \(|\varphi _{yt}| \ge \delta /2\) at \((x_0, y_0, t_0)\), where \(\delta = \delta _0 / C_0\). Say that \(|\varphi _{xt}| \ge \delta /2\). Then \(|\varphi _{xt}| \ge \delta /4\) on \(\mathrm {supp} \psi _j\) since \(\mathrm {supp} \psi _j\) is contained in a small cube.

Invoking Theorem 1.1 we get
$$\begin{aligned} \left( \int |\mathcal {U}_N^{(j)} f(x,y) |^2 dx \right) ^{1/2} \le C N^{-1/2} \left( \int |f(t)|^2 dt \right) ^{1/2} \end{aligned}$$
for every y. Integrating in y and summing over j we then obtain
$$\begin{aligned} || U_N f ||_{L^2({\mathbb R}^2)} \le C N^{-1/2} || f||_{L^2 ({\mathbb R})}. \end{aligned}$$
Interpolating between the inequalities (2.1) and (2.2) one has
$$\begin{aligned} || \mathcal {U}_N f ||_{L^p ({\mathbb R}^2)} \le C N^{\varepsilon - 1/2} ||f||_{L^p({\mathbb R})}, \ 2<p\le 4 \end{aligned}$$
for every \(\varepsilon >0\).
We then assume \(q>4\). Choosing \(\mu \) as above we have \( \mathcal {U}_N (f) = \mathcal {U}_N (\mu f) \) and it follows that
$$\begin{aligned} || \mathcal {U}_n f ||_q \le C N^{-2/q} || \mu f||_r \le C N^{-2/q} ||\mu f ||_q \le C N^{-2/q} ||f||_q, \end{aligned}$$
where we have used Hölder’s inequality. It remains to study the case \(1<p<2\). Interpolating between (2.2) and the trivial estimate \( ||\mathcal {U}_N f ||_1 \le C || f||_1 \) one obtains
$$\begin{aligned} || \mathcal {U}_n f ||_p \le C N^{-(1-1/p)} ||f||_p, \ 1<p<2, \end{aligned}$$
and Lemma 2.2 follows from (2.2), (2.3), (2.4), and (2.5). \(\square \)
Now let \(\varphi (x,y,t) = d^\gamma \), where \(d=((x-t)^2 + y^2)^{1/2}\) and \(0<\gamma \le 1\). A computation shows that
$$\begin{aligned} \mathcal {J}= \gamma ^2 (\gamma -2) y \big ( (\gamma -1) (x-t)^2 - y^2 \big ) \end{aligned}$$
for \(d=1\). Since \(\mathcal {J}\) is a homogeneous function of degree \(2\gamma -5\) of \((x_0, y)\) where \(x_0 = x-t\), we conclude that if \(1/2 \le d \le 2\) and \(|y|\ge c>0\) on \(\mathrm {supp} \psi _1\), then \(|\mathcal {J}| \ge c_1 >0\) on \(\mathrm {supp} \psi _1\). Hence (2.2)–(2.5) hold in this case.

We remark that in the case \(\gamma =1\) \(\mathcal {J}\) was computed in Carleson and Sjölin [2], and that in the case \(\gamma =1\) (2.2) and (2.3) are proved in [2] in the case \(\psi _1(x,y,t) = \chi _1(t) \chi _2(x,y)\), where \(\chi _1\) is the characteristic function for the interval [0, 1] and \(\chi _2\) is the characteristic function for the square \([0,1]\times [2,3]\). We shall now prove Theorem 1.3.

Proof of Theorem 1.3

We shall estimate the norm of \(T_\lambda \) where
$$\begin{aligned} T_\lambda f(x) = \int \limits _{\mathbb R}e^{i \lambda | x-(y',0) |^\gamma } \psi _0 (x,y') K \big (x-(y',0)\big ) f(y') dy', \end{aligned}$$
where \(x\in {\mathbb R}^2\). Here \(\lambda \ge 2\), \(0<\gamma \le 1\), and \(\psi _0 \in C_0^\infty ({\mathbb R}^2 \times {\mathbb R})\). Also \(K(z) = |z|^{m-1} \omega (z) \), \(z\in {\mathbb R}^2\setminus \{0\}\), where \(0<m<1\) and \(\omega \) is described in the introduction.

We first observe that there exists \(\psi \in C_0^\infty ({\mathbb R}^2)\), with support in \(\{ x\in {\mathbb R}^2: \ 1/2 \le |x| \le 2 \}\) such that \(K(z) = \sum \limits _{k=-\infty }^\infty 2^{k(1-m) } \psi (2^k z) \omega (z) \) (see Stein [6, p. 393]). Since \(\mathrm {supp} \psi _0\) is bounded it follows that there exists an integer \(k_0\) such that \(K(z) = \sum \limits _{k=k_0 }^\infty 2^{k(1-m) } \psi (2^k z) \omega (z) \) for all \(z=x-(y',0)\) with \((x,y')\in \mathrm {supp} \psi _0\). We shall assume that \(k_0 = 0\). The proof in the general case is the same as for \(k_0 = 0\). Also choose \(\chi \in C_0^\infty ({\mathbb R})\) such that \( \mathrm {supp} \chi \subset [-1/2 -1/10, 1/2+1/10] \) and \(\sum \limits _{j=-\infty }^\infty \chi (t-j) =1 \).

We have \(T_\lambda f = \sum \limits _{k=0}^\infty T_{\lambda ,k} f\) where
$$\begin{aligned} T_{\lambda ,k} f(x) = \int \limits _{\mathbb R}e^{i \lambda | x-(y',0) |^\gamma } \psi _0 (x,y') 2^{k(1-m)} \psi \big (2^k(x-(y',0))\big ) \omega (x-(y',0)) f(y') dy', \end{aligned}$$
Also \(T_{\lambda ,k} f = \sum \limits _{j} T_{\lambda ,k} f_j \) where \(f_j(t) = f(t) \chi \big ( 2^k(t-2^{-k}j) \big )\). Assuming \(1<p<\infty \) and invoking Hölder’s inequality we obtain
$$\begin{aligned} |T_{\lambda ,k} f(x) |^p \le C \sum \limits _j |T_{\lambda ,k} f_j (x) |^p, \end{aligned}$$
since the number of terms in the above sum is bounded.
Setting \(y' = 2^{-k} z'\) we get
$$\begin{aligned}&T_{\lambda ,k } f_j(x)\\&\quad = \int \limits _{\mathbb R}e^{i\lambda |x-(y',0)|^\gamma } 2^{k(1-m)} \psi _0 (x,y') \psi \big ( 2^k(x-(y',0)) \big ) \omega \big (x-(y',0)\big ) f_j(y') dy'\\&\quad =2^{-mk} \int \limits _{\mathbb R}e^{i\lambda |x-2^{-k}(z',0)|^\gamma } \psi _0 (x,2^{-k}z') \psi \big (2^k x-(z',0)\big ) \omega \big (x-2^{-k}(z',0) \big ) f_j(2^{-k}z') dz' \\&\quad =2^{-mk} \int \limits _{\mathbb R}e^{i\lambda 2^{-k \gamma } |2^k x-(z',0)|^\gamma } \psi _0 (x,2^{-k}z') \psi \big (2^kx-(z',0) \big ) \omega \big (2^k x- (z',0)\big ) f(2^{-k}z') \chi (z' - j) dz' \\&\quad = [\text {with } y'=z' - j ] 2^{-mk} \int \limits _{\mathbb R}e^{i\lambda 2^{-k \gamma }| 2^k x - (y'+j,0) |^\gamma } \psi _0 (x, 2^{-k} (y'+j) ) \psi ( 2^k x - (y'+j,0) ) \\&\qquad \times \omega \big (2^k x - (y'+j,0) \big ) f( 2^{-k} (y' +j) ) \chi (y' ) dy' = 2^{-mk} \int \limits _{{\mathbb R}} e^{i\lambda 2^{-k \gamma }| 2^k ( x - (2^{-k}j,0) ) - (y',0) |^\gamma } \\&\qquad \times \psi _0( x, 2^{-k} j + 2^{-k} y' ) \psi \big (2^{k} (x-(2^{-k}j,0)) - (y',0) \big ) \omega \big ( 2^k (x- (2^{-k}j,0)) - (y',0) \big ) \\&\qquad \times f(2^{-k} j + 2^{-k} y') \chi (y') dy'. \end{aligned}$$
We also have
$$\begin{aligned}&\int \limits _{{\mathbb R}^2} | T_{\lambda ,k} f_j(x) |^p dx = [\text {with } x=u+(2^{-k}j,0) ] \nonumber \\&\int \limits _{{\mathbb R}^2} \left| T_{\lambda ,k} f_j \big (u + (2^{-k}j, 0) \big ) \right| ^p du = [\text {with } \xi = 2^k u] \nonumber \\&2^{-2k} \int \limits _{{\mathbb R}^2} \left| T_{\lambda ,k} f_j \big (2^{-k} \xi +(2^{-k}j, 0) \big ) \right| ^p d\xi . \end{aligned}$$
Now let \(\widetilde{\chi }\in C_0^\infty ({\mathbb R})\) be so that \(\widetilde{\chi } =1\) on \(\mathrm {supp} \chi \) and \(\mathrm {supp} \widetilde{\chi } \subset [-1,1]\). We then have
$$\begin{aligned} T_{\lambda ,k} f_j \big (2^{-k} \xi +(2^{-k}j, 0) \big )= & {} 2^{-mk} \int \limits _{{\mathbb R}} e^{i\lambda 2^{-k \gamma } |\xi - (y',0)|^\gamma }\psi _0 ( 2^{-k} \xi \\&+(2^{-k}j,0), 2^{-k} j+ 2^{-k}y') \psi \big (\xi - (y',0)\big ) \\&\times \omega \big (\xi - (y',0) \big ) f(2^{-k}j + 2^{-k} y') \chi (y') \widetilde{\chi }(y') dy' \\= & {} 2^{-mk } \int \limits _{{\mathbb R}} e^{i\lambda 2^{-k \gamma } \Phi (y',\xi ) } \psi _1(y', \xi ) g(y') dy'\\= & {} 2^{- mk} \mathcal {U}_{\lambda 2^{-k\gamma }} g(\xi ), \end{aligned}$$
$$\begin{aligned} \Phi (y',\xi ) = |\xi - (y',0)|^\gamma = (|\xi ' - y'|^2 + \xi _2^2)^{\gamma /2}, \end{aligned}$$
$$\begin{aligned} \psi _1(y',\xi ) = \psi \big ( \xi - (y',0) \big ) \omega \big (\xi - (y',0)\big ) \psi _0 (2^{-k}\xi + (2^{-k}j,0), 2^{-k}j+2^{-k}y' ) \widetilde{\chi }(y'), \end{aligned}$$
$$\begin{aligned} g(y') = f( 2^{-k} j +2^{-k} y' ) \chi (y'). \end{aligned}$$
Here \(\xi =(\xi _1, \xi _2)=(\xi ', \xi _2)\).

It is clear that \(\psi _1\) has a support which is uniformly bounded in j and k, and the derivatives of \(\psi _1\) can be bounded uniformly in j and k. Here we use the fact that \(k\ge 0\).

Invoking (2.6) we conclude that
$$\begin{aligned} \left( \int \limits _{{\mathbb R}^2} |T_{\lambda , k} f_j (x) |^p dx \right) ^{1/p} = 2^{-2k/p} 2^{-mk} \left( \int \limits _{{\mathbb R}^2} | \mathcal {U}_{\lambda 2^{-k \gamma }} g(\xi ) |^p d\xi \right) ^{1/p}. \end{aligned}$$
We set \(d=(|\xi ' - y'|^2 + \xi _2^2)^{1/2}\). It follows from the definitions of \(\psi \) and \(\omega \) that \(1/2 \le d \le 2\) and \(|\xi _2|\ge c>0\) on \(\mathrm {supp} \psi _1 \). Hence the determinant \(\mathcal {J}\) for the phase function \(\Phi \) satisfies \(|\mathcal {J}|\ge c>0\) on \(\mathrm {supp} \psi _1\), as we remarked after the proof of Lemma 2.2. We can therefore apply Lemma 2.2 and one obtains
$$\begin{aligned} \left( \int \limits _{{\mathbb R}^2} | \mathcal {U}_{\lambda 2^{-k \gamma }} g(\xi ) |^p d\xi \right) ^{1/p} \le C (\lambda 2^{-k \gamma })^{-\beta (p)} ||g||_{L^p({\mathbb R})}. \end{aligned}$$
We have \(g=g_{j,k}\) and
$$\begin{aligned} \int \limits _{{\mathbb R}} |g_{j,k}|^p dy' \le \int \limits _{-1}^1 |f (2^{-k}j + 2^{-k} y') |^p dy' = 2^k \int \limits _{|z'|\le 2^{-k}} |f(2^{-k}j+z')|^p dz' \end{aligned}$$
and it follows that
$$\begin{aligned} \sum \limits _{j=-\infty }^\infty \int \limits _{{\mathbb R}} |g_{j,k}|^p dy' \le C 2^k || f||_p^p. \end{aligned}$$
$$\begin{aligned}&\int \limits _{{\mathbb R}^2} |T_{\lambda ,k} f|^p dx \le C \sum \limits _j \int \limits _{{\mathbb R}^2} |T_{\lambda ,k} f_j|^p dx \le C 2^{-2k} 2^{-mkp} (\lambda 2^{-k \gamma })^{-\beta (p) p} \\&\quad \sum \limits _j \int \limits _{\mathbb R}|g_{j,k}|^p dy' \le C 2^{-k} 2^{-mk p} (\lambda 2^{-k \gamma })^{-p \beta (p)} ||f||_p^p \end{aligned}$$
and we obtain the inequality
$$\begin{aligned} || T_{\lambda , k}||_p \le C 2^{-k/p} 2^{-mk} (\lambda 2^{-k \gamma })^{-\beta (p)}. \end{aligned}$$
Making a trivial estimate we also have
$$\begin{aligned} ||T_{\lambda ,k} ||_p \le C 2^{-k/p} 2^{- m k}. \end{aligned}$$
Invoking the inequality \(|| T_\lambda ||_p \le \sum \limits _0^\infty || T_{\lambda , k} ||_p \) we obtain
$$\begin{aligned} || T_\lambda ||_p \le C \lambda ^{-\beta (p)} \sum \limits _{2^k \le \lambda ^{1/\gamma }} 2^{ k ( -1/p -m+\gamma \beta (p) ) } + C \sum \limits _{2^k \ge \lambda ^{1/\gamma }} 2^{-k (1/p+m)} =A+B. \end{aligned}$$
It is clear that \(B\le C \lambda ^{-(1/p+m)/\gamma }\) and in the case \(1/p + m<\gamma \beta (p)\) we get
$$\begin{aligned} A \le C \lambda ^{-\beta (p)} \lambda ^{(-1/p-m +\gamma \beta (p))/\gamma } = C\lambda ^{-(1/p +m)/\gamma } \end{aligned}$$
$$\begin{aligned} || T_\lambda ||_p \le C \lambda ^{-(1/p+m)/\gamma }. \end{aligned}$$
In the case \(1/p + m = \gamma \beta (p)\) we get \(A\le C \lambda ^{-\beta (p) } \log \lambda \) and \( || T_\lambda ||_p \le C \lambda ^{-\beta (p)} \log \lambda \).

Finally, in the case \(1/p + m >\gamma \beta (p)\) we have \( A \le C \lambda ^{-\beta (p)} \) and \(|| T_\lambda ||_p \le C \lambda ^{-\beta (p)}.\)

We remark that in the case \(p=2\) only the case \(1/p +m >\gamma \beta (p)\) can occur. The proof of Theorem 1.3 is complete. \(\square \)

Before proving Theorem 1.4 we shall make a preliminary observation. Set \(\xi =(\xi ', \xi _n)\) where \(\xi ' = (\xi _1,\xi _2,\ldots ,\xi _{n-1})\) and \(n \ge 2\). Also set \(x'= (x_1,x_2,\ldots ,x_{n-1})\) and \(\Phi (x', \xi ) = d^\gamma \) where \(\gamma >0\) and \(d=( |\xi ' - x'|^2 + \xi _n^2 )^{1/2}\). In [1, Section 4.1], we studied the determinant
$$\begin{aligned} P(x', \xi ', \xi _n ) =\mathrm {det} \left( \frac{\partial ^2 \Phi }{\partial x_i \partial \xi _j} \right) _{i,j=1}^{n-1} \end{aligned}$$
for \(1/2 \le d \le 2\). In [1] it is proved that
$$\begin{aligned} P(x', \xi ', \xi _n) = (-\gamma d^{\gamma -2})^{n-1} \frac{(\gamma -1) |\xi ' -x'|^2 + \xi _n^2 }{d^2}. \end{aligned}$$
Now let \(\Phi _1 (x', \xi ') = |\xi ' - x'|^\gamma = d_1^\gamma \) where \(d_1 = |\xi ' - x'|\). We shall need the determinant
$$\begin{aligned} P_1 (x', \xi ') =\mathrm {det} \left( \frac{\partial ^2 \Phi _1}{\partial x_i \partial \xi _j} \right) _{i,j=1}^{n-1}. \end{aligned}$$
It is clear that
$$\begin{aligned} P_1(x', \xi ') =P(x', \xi ', 0) = (-\gamma d_1^{\gamma - 2 })^{n-1}(\gamma -1) \end{aligned}$$
and for \(\gamma >0\), \(\gamma \ne 1\), it follows that
$$\begin{aligned} |P_1(x', \xi ')|\ge c>0 \text { for } 1/2\le d_1 \le 2. \end{aligned}$$

Proof of Theorem 1.4

We shall use the method in the proof of Theorem 1.3 and omit some details. We assume that
$$\begin{aligned} K(z) = \sum \limits _{k=0}^\infty 2^{k(n-1-m)} \psi (2^k z), \end{aligned}$$
where \(\mathrm {supp} \psi \subset \{ x\in {\mathbb R}^{n-1}, \ 1/2\le |x| \le 2 \}\). One obtains
$$\begin{aligned} S_\lambda f = \sum \limits _{k=0}^\infty S_{\lambda , k } f \end{aligned}$$
$$\begin{aligned} S_{\lambda , k} f(x) = \int \limits _{{\mathbb R}^{n-1}} e^{i\lambda |x-y|^\gamma } \psi _0 (x,y) 2^{k(n-1-m)} \psi \big ( 2^k(x-y) \big ) f(y) dy. \end{aligned}$$
We also have
$$\begin{aligned} f=\sum \limits _{j\in {\mathbb Z}^{n-1}} f_j, \end{aligned}$$
$$\begin{aligned} f_j(t) = f(t) \chi \big (2^k(t-2^{-k}j)\big ), \ j\in {\mathbb Z}^{n-1}, \ t\in {\mathbb R}^{n-1}, \end{aligned}$$
and \(\chi \in C_0^\infty ({\mathbb R}^{n-1})\) is like \(\chi \) in the proof of Theorem 1.3.
The Schwarz inequality gives the estimate
$$\begin{aligned} | S_{\lambda ,k} f(x) |^2 \le C \sum \limits _j |S_{\lambda , k} f_j(x)|^2 \end{aligned}$$
and arguing as in the proof of Theorem 1.3 we get
$$\begin{aligned}&S_{\lambda , k } f_j(x) = 2^{-mk} \int \limits _{{\mathbb R}^{n-1}} e^{i\lambda 2^{-k \gamma } |2^k (x-2^{-k}j)-y|^\gamma } \psi _0(x, 2^{-k}j +2^{-k}y)\\&\quad \psi (2^k(x-2^{-k}j)-y) \times f(2^{-k}j+2^{-k }y) \chi (y)dy \end{aligned}$$
$$\begin{aligned} \int \limits _{{\mathbb R}^{n-1}} |S_{\lambda , k } f_j(x)|^2 dx = 2^{-k(n-1)} \int \limits _{{\mathbb R}^{n-1}} |S_{\lambda , k} f_j (2^{-k}\xi + 2^{-k} j)|^2 d\xi . \end{aligned}$$
It follows that
$$\begin{aligned} S_{\lambda , k} f_j (2^{-k}\xi + 2^{-k} j)&= 2^{-m k} \int \limits _{{\mathbb R}^{n-1}} e^{i \lambda 2^{-k \gamma } |\xi - y|^\gamma } \psi _0( 2^{-k}\xi + 2^{-k} j, 2^{-k} j+2^{-k}y ) \\&\ \quad \times \psi (\xi - y) f(2^{-k}j + 2^{-k} y) \chi (y) \widetilde{\chi }(y) dy\\&= 2^{- m k} \mathcal {U}_{\lambda 2^{-k \gamma }} g(\xi ) \\&=2^{-m k}\int \limits _{{\mathbb R}^{n-1}} e^{i\lambda 2^{-k\gamma } \Phi _1(y,\xi )} \psi _1(y,\xi ) g(y) dy&\end{aligned}$$
where \(\Phi _1(y,\xi ) = |\xi - y|^\gamma \), \(\psi _1(y,\xi ) = \psi ( \xi - y) \psi _0( 2^{-k}\xi + 2^{-k}j, 2^{-k} j+2^{-k }y ) \widetilde{\chi } (y)\), and \(g(y) = f(2^{-k} j +2^{-k} y) \chi (y)\).
Invoking the determinant condition (2.8) and Theorem 1.1 we conclude that
$$\begin{aligned} || \mathcal {U}_{\lambda 2^{-k \gamma } } g||_{L^2({\mathbb R}^{n-1})} \le C (\lambda 2^{-k \gamma })^{-\alpha } ||g||_{L^2({\mathbb R}^{n-1})} \end{aligned}$$
where \(\alpha =(n-1)/2\). Arguing as in the proof of Theorem 1.3 we then obtain
$$\begin{aligned} || S_{\lambda , k}||_2 \le C 2^{-mk} \lambda ^{-\alpha } 2^{k \gamma \alpha } \end{aligned}$$
and \(||S_{\lambda , k} ||_2 \le C 2^{- mk}\).
$$\begin{aligned} || S_\lambda ||_2 \le C \lambda ^{-\alpha } \sum \limits _{2^k \le \lambda ^{1/\gamma }} 2^{(\gamma \alpha - m)k} + \sum \limits _{2^k \ge \lambda ^{1/\gamma }} 2^{-mk} \end{aligned}$$
and Theorem 1.4 follows easily from this inequality. \(\square \)

3 Counter-examples

Assume \(\gamma >0\), \(1<p<\infty \), and
$$\begin{aligned} T_\lambda f(x) = \int \limits _{{\mathbb R}^{n-1}} e^{i\lambda |x-(y',0)|^\gamma } \psi _0(x,y') K \big ( x-(y',0) \big ) f(y') dy', \end{aligned}$$
where \(x \in {\mathbb R}^n\), \(n\ge 2\), and \(K(z) = |z|^{m-n+1}\) with \(0<m<n-1\). We shall estimate the norm \(|| T_\lambda ||_p = || T_\lambda ||_{L^p({\mathbb R}^{n-1}) \rightarrow L^p({\mathbb R}^n)} \) from below. We take \(y_0'\in {\mathbb R}^{n-1}\) and set \(E=B(y_0'; c_0 \lambda ^{-\rho })\) where B(xR) denotes a ball with center x and radius R. Also let F denote a cube in \({\mathbb R}^n\) with center \((y_0', 100 c_0 \lambda ^{-\rho } )\) and side length \(c_0 \lambda ^{-\rho }\). We assume that \(\psi _0(x,y') = 1\) for \(x\in F\) and \(y'\in E\).
Setting \(f=\chi _E\) and taking \(x\in F\) we obtain
$$\begin{aligned} T_\lambda f(x)= & {} \int \limits _E K \big ( x-(y',0) \big )dy' + \int \limits _E ( e^{i\lambda |x-(y',0)|^\gamma }-1 ) K \big (x-(y',0) \big ) dy' \\= & {} P(x) +R(x). \end{aligned}$$
Setting \(\rho =1/\gamma \) we have
$$\begin{aligned} | e^{i\lambda |x-(y',0)|^\gamma }-1 | \le \lambda |x-(y',0)|^\gamma \le C c_0 \lambda \lambda ^{-\rho \gamma } =C c_0, \ y'\in E, \end{aligned}$$
$$\begin{aligned} |R(x)| \le C c_0 \int \limits _E K \big ( x-(y',0) \big ) dy'. \end{aligned}$$
Now taking \(c_0\) small we obtain
$$\begin{aligned} | T_\lambda f(x) | \ge c \int \limits _E K \big (x-(y',0)\big ) dy' \ge c \int \limits _E \lambda ^{-\rho (m-n+1)} dy' = C \lambda ^{-\rho m} \end{aligned}$$
$$\begin{aligned} \int \limits _F |T_\lambda f(x) |^p dx \ge c \lambda ^{-\rho m } (\lambda ^{-\rho n})^{1/p} = c \lambda ^{-m/\gamma } \lambda ^{-n/ \gamma p }. \end{aligned}$$
On the other hand
$$\begin{aligned} ||f||_p = \left( \int \limits _E dy' \right) ^{1/p} = C \lambda ^{-\rho (n-1)/p} = C \lambda ^{-(n-1)/\gamma p} \end{aligned}$$
and we have
$$\begin{aligned} ||T_\lambda ||_p \ge c \frac{\lambda ^{-m/\gamma } \lambda ^{-n/\gamma p} }{\lambda ^{-(n-1)/\gamma p}}= c \lambda ^{-m/\gamma } \lambda ^{-1/\gamma p} = c\lambda ^{-(1/p+m)/\gamma }. \end{aligned}$$
The same proof works also in the case \(K(z) = |z|^{m-n+1} \omega (z)\).
In Theorems 1.2 and 1.3 we proved estimates of the type
$$\begin{aligned} ||T_\lambda ||_p \le C \lambda ^{-(1/p +m)/\gamma } \end{aligned}$$
and the inequality (3.1) shows that these estimates are sharp.
In Theorem 1.4 we proved the estimate
$$\begin{aligned} ||S_\lambda ||_{2} \le C \lambda ^{-m/\gamma }. \end{aligned}$$
We shall now prove that also this estimate is sharp. We shall use the same method as in the above counter-example.
We take \(x_0\) and \(y_0\) in \({\mathbb R}^{n-1}\) with \(|x_0 -y_0|=100 c_0 \lambda ^{-\rho }\) and set \(E= B(y_0; c_0 \lambda ^{-\rho })\) and \(F = B(x_0; c_0 \lambda ^{-\rho })\). Here E and F are balls in \({\mathbb R}^{n-1}\). Setting \(f=\chi _E\) and arguing as above one obtains
$$\begin{aligned} |S_\lambda f(x) | \ge c \lambda ^{-\rho m} \text { for } x\in F. \end{aligned}$$
It follows that
$$\begin{aligned} ||S_\lambda f ||_2 \ge c \lambda ^{-m/\gamma } \lambda ^{-(n-1)/2\gamma } \end{aligned}$$
$$\begin{aligned} ||f||_2 = C \lambda ^{-(n-1)/2\gamma }. \end{aligned}$$
We conclude that
$$\begin{aligned} ||S_\lambda ||_2 \ge c \lambda ^{-m/\gamma } \end{aligned}$$
and it follows that (3.2) is sharp.
In Theorems 1.2 and 1.3 we have
$$\begin{aligned} T_\lambda f(x) = \int \limits _{{\mathbb R}^{n-1}} e^{i\lambda \varphi (x,y')} \psi _0(x,y') K \big (x-(y',0) \big ) f(y') dy' \end{aligned}$$
where \(x=(x',x_n)\) and \(\varphi (x,y') = ( |x'-y'|^2 + x_n^2 )^{\gamma /2} \).
We let a denote the point \((0,1) = (0,0,\ldots ,0,1)\) in \({\mathbb R}^n\). We assume that \(\psi _0(x,y') =1\) in a neighbourhood of (a, 0) and let \(f=\chi _B\) where \(B=B(0; c_0 \lambda ^{-1})\) is a ball in \({\mathbb R}^{n-1}\). For x in a neighbourhood of a one obtains
$$\begin{aligned} T_\lambda f(x) = \int \limits _B e^{i \lambda \varphi (x,y')} K \big ( x-(y',0) \big ) dy'. \end{aligned}$$
It follows from the mean value theorem that
$$\begin{aligned} |\varphi (x,y') - \varphi (x,0)|\le C c_0 \lambda ^{-1} \text { for } y'\in B \end{aligned}$$
and choosing \(c_0\) small we obtain
$$\begin{aligned} |\lambda \varphi (x,y') - \lambda \varphi (x,0) |\le c_1 \text { for } y'\in B, \end{aligned}$$
where \(c_1\) is small. It follows that there is no cancellation in the above integral and we get
$$\begin{aligned} |T_\lambda f(x) | \ge c_2 \lambda ^{-(n-1)} \end{aligned}$$
in a neighbourhood of a. Hence
$$\begin{aligned} ||T_\lambda f||_2 \ge c_3 \lambda ^{-(n-1)}. \end{aligned}$$
We have \(||f||_2 = c_4 \lambda ^{-(n-1)/2}\) and we obtain
$$\begin{aligned} \frac{||T_\lambda ||_2 }{|| f||_2} \ge \frac{c_3 \lambda ^{-(n-1)}}{c_4 \lambda ^{-(n-1)/2}} = c_5 \lambda ^{-(n-1)/2}. \end{aligned}$$
$$\begin{aligned} ||T_\lambda ||_2 \ge c_5 \lambda ^{-(n-1)/2} \end{aligned}$$
and thus the estimates \( ||T_\lambda ||_2 \le C \lambda ^{-(n-1)/2}\) in Theorems 1.2 and 1.3 are sharp.
We shall then construct a similar counter-example for the operator \(S_\lambda \) in Theorem 1.4. Here we have
$$\begin{aligned} S_\lambda f(x) = \int \limits _{{\mathbb R}^{n-1}} e^{i\lambda \varphi (x,y)} \psi _0(x,y ) K(x-y) f(y) dy, \ x\in {\mathbb R}^{n-1}, \end{aligned}$$
where \(\varphi (x,y) = |x-y|^\gamma \). Take \(a=(0,0,\ldots ,0,1)\) and assume that \(\psi _0(x,y)=1\) in a neighbourhood of (a, 0). Also let \(f=\chi _B\) where B is as in the previous counter-example. The same argument as above then gives the estimate \(||S_\lambda ||_2 \ge c \lambda ^{-(n-1)/2}\) and it follows that the estimate \(||S_\lambda ||_2 \le C \lambda ^{-(n-1)/2}\) in Theorem 1.4 is sharp.
We shall then again consider the operator \(T_\lambda \) in Theorem 1.3. Here we have \(n=2\) and the above counter-example also gives
$$\begin{aligned} || T_\lambda ||_p \ge \frac{||T_\lambda f||_p }{|| f||_p} \ge c \frac{\lambda ^{-1}}{\lambda ^{-1/p}} = c\lambda ^{-(1-1/p)} \end{aligned}$$
for \(1\le p <2\). It follows that the estimate
$$\begin{aligned} ||T_\lambda ||_p \le C \lambda ^{-\beta (p)} \end{aligned}$$
for \(1<p<2\) in Theorem 1.3 is sharp (since \(\beta (p) = 1-1/p\)).
In Theorem 1.3 we have
$$\begin{aligned} T_\lambda f(x,y) = \int \limits _{\mathbb R}e^{i\lambda \varphi (x,y,t)}\psi _0(x,y,t) K(x-t, y) f(t) dt, \ (x,y)\in {\mathbb R}^2, \end{aligned}$$
where \(\varphi (x,y,t) = \big ( (x-t)^2 + y^2 \big )^{\gamma /2}\) and \(K(z) = |z|^{m-1} \omega (z)\).
$$\begin{aligned} T_\lambda ^* g(t) = \int \limits _{{\mathbb R}^2} e^{-i \lambda \varphi (x,y,t) } \overline{\psi _0(x,y,t)} K(x-t,y) g(x,y) dx dy, \ t\in {\mathbb R}, \end{aligned}$$
we get
$$\begin{aligned} ( T_\lambda f,g )_2 =(f,T_\lambda ^* g)_1, \ f\in C_0^\infty ({\mathbb R}), \ g\in C_0^\infty ({\mathbb R}^2), \end{aligned}$$
where \((,)_2\) and \((,)_1\) denote the inner products in \(L^2({\mathbb R}^2)\) and \(L^2({\mathbb R})\). It follows that
$$\begin{aligned} ||T_\lambda ||_p = || T_\lambda ||_{L^p({\mathbb R}) \rightarrow L^p({\mathbb R}^2) } \ge || T_\lambda ^*||_{L^r({\mathbb R}^2) \rightarrow L^r({\mathbb R})} \end{aligned}$$
where \(1/p + 1/r =1\). We shall use this inequality for \(4\le p<\infty \).
Let B denote a disc in \({\mathbb R}^2\) with center (0, 1) and radius \(c_0 \lambda ^{-1}\). Take \(g\in C_0^\infty ({\mathbb R}^2)\) with support in B, \(0\le g \le 1\), and \(g=1\) in \(\frac{1}{2} B\). Then
$$\begin{aligned} ||g||_r \le \left( \iint \limits _B dx dy \right) ^{1/r} = c \lambda ^{-2/r} \end{aligned}$$
and choosing \(\psi _0\) such that \(\psi _0 (x,y,t) = 1\) in a neighbourhood of (0, 1, 0) we get
$$\begin{aligned} |T_\lambda ^* g(t) | \ge c \lambda ^{-2} \end{aligned}$$
in a neighbourhood of 0. Hence
$$\begin{aligned} || T_\lambda ^* g||_r \ge c \lambda ^{-2} \end{aligned}$$
$$\begin{aligned} || T_\lambda ^* ||_r \ge \frac{||T_\lambda ^* g ||_r }{ ||g ||_r }\ge c \frac{\lambda ^{-2}}{\lambda ^{-2/r}} = c \lambda ^{-2(1-1/r)}. \end{aligned}$$
Since \(1-1/r = 1/p\) we conclude that
$$\begin{aligned} ||T_\lambda ||_p \ge c \lambda ^{-2/p}, \ 4\le p <\infty \end{aligned}$$
and it follows that the estimate
$$\begin{aligned} || T_\lambda ||_p \le C \lambda ^{-\beta (p)} , \ 4<p<\infty , \end{aligned}$$
in Theorem 1.3 is sharp (since \(\beta (p) = 2/p\)).
In Theorem 1.3 we also have an estimate of the type
$$\begin{aligned} || T_\lambda ||_p \le C \lambda ^{-1/2 + \varepsilon } \end{aligned}$$
for \(2<p<4\). We shall finally discuss the sharpness of this estimate in the case \(\gamma =1\). We shall study the statement
$$\begin{aligned} || T_\lambda ||_p \le C \lambda ^{-1/2 - \delta } \text { for some } p \text { with } 2<p<4 \text { and some } \delta >0. \end{aligned}$$
Omitting details we shall describe how (3.4) leads to a contradiction.
Following Stein [6], p. 393, we have
$$\begin{aligned} \frac{1}{|x|^{3/2}} = u(x) + \sum \limits _{k=1}^\infty 2^{-3k/2} \psi \left( \frac{x}{2^k} \right) , \ x\in {\mathbb R}^2 \setminus \{0\}, \end{aligned}$$
where \(u\in L^1({\mathbb R}^2)\), \(\psi \) is smooth, and \(\mathrm {supp} \psi \subset \{x\in {\mathbb R}^2; \ 1/2 \le |x|\le 2 \}\). We set
$$\begin{aligned} K_0(x) = \frac{e^{i|x|}}{|x|^{3/2}} = e^{i|x| } u(x) + \sum \limits _{k=1}^\infty 2^{-3k/2} e^{i|x|} \psi (x/2^k), \ x\in {\mathbb R}^2\setminus \{0\}, \end{aligned}$$
and \(S_0 f =K_0 \star f\). We define the operator \(V_k\) by setting
$$\begin{aligned} V_k f = 2^{-3k/2} 2^{2k} ( e^{i 2^k |x| } \psi ) \star f&= \\ 2^{k/2} ( e^{i 2^k |x| } \psi ) \star f&= \lambda ^{1/2} ( e^{i\lambda |x| } \psi )\star f, \end{aligned}$$
where \(\lambda = 2^k\). Using (3.4) we can prove that
$$\begin{aligned} || V_k ||_p = || V_k||_{L^p({\mathbb R}^2 ) \rightarrow L^p ({\mathbb R}^2)} \le C \lambda ^{-\delta } = C 2^{-k \delta }, \end{aligned}$$
and the inequality
$$\begin{aligned} \sum \limits _{k=1}^\infty || V_k ||_p <\infty \end{aligned}$$
implies that \(S_0\) is a bounded operator on \(L^p({\mathbb R}^2)\). It follows that the characteristic function of the unit disc is a Fourier multiplier for \(L^p({\mathbb R}^2)\). This contradicts Fefferman’s multiplier theorem.


  1. 1.
    Aleksanyan, H., Shahgholian, H., Sjölin, P.: \(L^2\)-estimates for singular oscillatory integral operators. J. Math. Anal. Appl. 441, 529–548 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Stud. Math. 44, 287–299 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Hörmander, L.: Oscillatory integrals and multipliers on \(FL^p\). Ark. Mat. 11, 1–11 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Phong, D., Stein, E.: Hilbert integrals, singular integrals, and Radon transforms I. Acta Math. 157, 99–157 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Sjölin, P.: Convolution with oscillating kernels. Indiana Univ. Math. J. 30, 47–55 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations