Journal of Fourier Analysis and Applications

, Volume 24, Issue 1, pp 141–183 | Cite as

Riemann Localisation on the Sphere

  • Yu Guang Wang
  • Ian H. Sloan
  • Robert S. Womersley


This paper first shows that the Riemann localisation property holds for the Fourier-Laplace series partial sum for sufficiently smooth functions on the two-dimensional sphere, but does not hold for spheres of higher dimension. By Riemann localisation on the sphere \(\mathbb {S}^{d}\subset \mathbb {R}^{d+1}\), \(d\ge 2\), we mean that for a suitable subset X of \(\mathbb {L}_{p}(\mathbb {S}^{d})\), \(1\le p\le \infty \), the \(\mathbb {L}_{p}\)-norm of the Fourier local convolution of \(f\in X\) converges to zero as the degree goes to infinity. The Fourier local convolution of f at \(\mathbf {x}\in \mathbb {S}^{d}\) is the Fourier convolution with a modified version of f obtained by replacing values of f by zero on a neighbourhood of \(\mathbf {x}\). The failure of Riemann localisation for \(d>2\) can be overcome by considering a filtered version: we prove that for a sphere of any dimension and sufficiently smooth filter the corresponding local convolution always has the Riemann localisation property. Key tools are asymptotic estimates of the Fourier and filtered kernels.


Filtered polynomial approximation Riemann–Lebesgue lemma Localization Dirichlet kernel Jacobi weights 

Mathematics Subject Classification

42C15 42A63 41A10 33C55 33C45 



The authors would like to thank Christian Gerhards and Leonardo Colzani for their discussion and comments on the convergence of the Fourier local convolution and the localisation principle. The authors also thank the anonymous referees for their comments on simplifying the proof of Theorem 3.2. This research was supported under the Australian Research Council’s Discovery Project DP120101816. The first author was supported under the University International Postgraduate Award (UIPA) of UNSW Australia.


  1. 1.
    Antoine, J.-P., Vandergheynst, P.: Wavelets on the two-sphere and other conic sections. J. Fourier Anal. Appl. 13(4), 369–386 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D.: Adaptive density estimation for directional data using needlets. Ann. Stat. 37(6A), 3362–3395 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D.: Asymptotics for spherical needlets. Ann. Stat. 37(3), 1150–1171 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belinsky, E., Dai, F., Ditzian, Z.: Multivariate approximating averages. J. Approx. Theory 125(1), 85–105 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berens, H., Butzer, P.L., Pawelke, S.: Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ. Res. Inst. Math. Sci. Ser. A 4, 201–268 (1968/1969)Google Scholar
  6. 6.
    Bonami, A., Clerc, J.-L.: Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques. Trans. Am. Math. Soc. 183, 223–263 (1973)zbMATHGoogle Scholar
  7. 7.
    Brandolini, L., Colzani, L.: Localization and convergence of eigenfunction expansions. J. Fourier Anal. Appl. 5(5), 431–447 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carbery, A., Soria, F.: Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an \(L^2\)-localisation principle. Rev. Mat. Iberoamericana 4(2), 319–337 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carbery, A., Soria, F.: Pointwise Fourier inversion and localisation in \({\mathbb{R}^n}\). J. Fourier Anal. Appl. 3(special issue), 847–858 (1997)Google Scholar
  10. 10.
    Carbery, A., Soria, F.: Sets of divergence for the localization problem for Fourier integrals. C. R. Acad. Sci. Paris Sér. I Math. 325(12), 1283–1286 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    NIST Digital Library of Mathematical Functions: Release 1.0.9 of 2014-08-29. Online companion to [21]
  12. 12.
    Freeden, W., Mayer, C.: Wavelets generated by layer potentials. Appl. Comput. Harmon. Anal. 14(3), 195–237 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Freeden, W., Windheuser, U.: Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination. Appl. Comput. Harmon. Anal. 4(1), 1–37 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Frenzen, C.L., Wong, R.: A uniform asymptotic expansion of the Jacobi polynomials with error bounds. Can. J. Math. 37(5), 979–1007 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gerhards, C.: A combination of downward continuation and local approximation for harmonic potentials. Inverse Prob. 30(8), 085004, 30 (2014)Google Scholar
  16. 16.
    Hille, E., Klein, G.: Riemann’s localization theorem for Fourier series. Duke Math. J. 21, 587–591 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ivanov, K., Petrushev, P., Xu, Y.: Sub-exponentially localized kernels and frames induced by orthogonal expansions. Math. Z. 264(2), 361–397 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marinucci, D., Peccati, G.: Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series, vol. 389. Cambridge University Press, Cambridge (2011)Google Scholar
  19. 19.
    Mhaskar, H.N.: On the representation of smooth functions on the sphere using finitely many bits. Appl. Comput. Harmon. Anal. 18(3), 215–233 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38(2), 574–594 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Petrushev, P., Xu, Y.: Localized polynomial frames on the interval with Jacobi weights. J. Fourier Anal. Appl. 11(5), 557–575 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pinsky, M.A.: Pointwise Fourier inversion and related eigenfunction expansions. Commun. Pure Appl. Math. 47(5), 653–681 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pinsky, M.A.: Pointwise Fourier inversion in several variables. Not. Am. Math. Soc. 42(3), 330–334 (1995)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Pinsky, M.A., Taylor, M.E.: Pointwise Fourier inversion: a wave equation approach. J. Fourier Anal. Appl. 3(6), 647–703 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral concentration on a sphere. SIAM Rev. 48(3), 504–536 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction. Princeton Lectures in Analysis, vol. 1. Princeton University Press, Princeton (2003)Google Scholar
  27. 27.
    Szegő, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23, 4th edn. AMS, Providence (2003)Google Scholar
  28. 28.
    Taylor, M.E.: Pointwise Fourier inversion on tori and other compact manifolds. J. Fourier Anal. Appl. 5(5), 449–463 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Taylor, M.E.: Eigenfunction expansions and the Pinsky phenomenon on compact manifolds. J. Fourier Anal. Appl. 7(5), 507–522 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Taylor, M.E.: The Gibbs phenomenon, the Pinsky phenomenon, and variants for eigenfunction expansions. Commun. Partial Differ. Equ. 27(3–4), 565–605 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Telyakovskiĭ, S.A.: The Riemann localization principle and an estimate for the rate of convergence. Sovrem. Mat. Fundam. Napravl. 25, 178–181 (2007)Google Scholar
  32. 32.
    Wang, K., Li, L.: Harmonic analysis and approximation on the unit sphere. Science Press, Beijing (2006)Google Scholar
  33. 33.
    Wang, Y.G., Le Gia, Q.T., Sloan, I.H., Womersley, R.S.: Fully discrete needlet approximation on the sphere. Appl. Comput. Harmon. Anal. (2016) (in press)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yu Guang Wang
    • 1
    • 2
  • Ian H. Sloan
    • 1
  • Robert S. Womersley
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of New South WalesKensingtonAustralia
  2. 2.Department of MathematicsCity University of Hong KongKowloon TongHong Kong

Personalised recommendations