Advertisement

Journal of Fourier Analysis and Applications

, Volume 22, Issue 4, pp 887–909 | Cite as

Some Smooth Compactly Supported Tight Wavelet Frames with Vanishing Moments

  • A. San Antolín
  • R. A. Zalik
Article

Abstract

Let \(A \in \mathbb {R}^{d \times d}\), \(d \ge 1\) be a dilation matrix with integer entries and \(| \det A|=2\). We construct several families of compactly supported Parseval framelets associated to A having any desired number of vanishing moments. The first family has a single generator and its construction is based on refinable functions associated to Daubechies low pass filters and a theorem of Bownik. For the construction of the second family we adapt methods employed by Chui and He and Petukhov for dyadic dilations to any dilation matrix A. The third family of Parseval framelets has the additional property that we can find members of that family having any desired degree of regularity. The number of generators is \(2^d+d\) and its construction involves some compactly supported refinable functions, the Oblique Extension Principle and a slight generalization of a theorem of Lai and Stöckler. For the particular case \(d=2\) and based on the previous construction, we present two families of compactly supported Parseval framelets with any desired number of vanishing moments and degree of regularity. None of these framelet families have been obtained by means of tensor products of lower-dimensional functions. One of the families has only two generators, whereas the other family has only three generators. Some of the generators associated with these constructions are even and therefore symmetric. All have even absolute values.

Keywords

Dilation matrix Fourier transform Refinable function Tight framelet Unitary Extension Principle 

Mathematics Subject Classification

42C40 

Notes

Acknowledgments

The first author was partially supported by MEC/MICINN Grant #MTM2011-27998 (Spain).

References

  1. 1.
    Ayache, A.: Some methods for constructing nonseparable, orthonormal, compactly supported wavelet bases. Appl. Comput. Harmon. Anal. 10, 99–111 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belogay, E., Wang, Y.: Arbitrarily smooth orthogonal nonseparable wavelets in \(\mathbb{R}^2\). SIAM J. Math. Anal. 30(3), 678–697 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bownik, M.: Tight frames of multidimensional wavelets. J. Fourier Anal. Appl. 3(5), 525–542 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93(453), 1–186 (1991)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chui, C.K., He, W.: Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8(3), 293–319 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chui, C.K., Lian, J.: A Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale = 3. Appl. Comput. Harmon. Anal. 2(1), 21–51 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chui, C.K., He, W., Stöckler, J.: Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmonic Anal. 13, 224–262 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chui, C.K., He, W., Stöckler, J., Sun, Q.: Compactly supported tight affine frames with integer dilations and maximum vanishing moments. Frames Adv. Comput. Math. 18(2–4), 159–187 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Christensen, O.: An Introduction to frames and Riesz bases. Birkhäser, Boston (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 906–996 (1988)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Daubechies, I., Han, B., Ron, A., Shen, Z.W.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dong, B., Shen, Z.: Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22(1), 78–104 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ehler, M.: On multivariate compactly supported bi-frames. J. Fourier Anal. Appl. 13(5), 511–532 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ehler, M., Han, B.: Wavelet bi-frames with few generators from multivariate refinable functions. Appl. Comput. Harmon. Anal. 25(3), 407–414 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goodman, T.N.T., Micchelli, C.A., Rodriguez, G., Seatzu, S.: Spectral factorization of Laurent polynomials. Adv. Comput. Math. 7, 429–454 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gröchening, K., Madych, W.R.: Multiresolution analysis, Haar bases and self-similar tillings of \(R^n\). IEEE Trans. Inf. Theory 38(2), 556–568 (1992)CrossRefGoogle Scholar
  18. 18.
    Gröchenig, K., Ron, A.: Tight compactly supported wavelet frames of arbitrarily high smoothness. Proc. Am. Math. Soc. 126, 1101–1107 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Han, B.: Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv. Comput. Math. 8(3), 221–247 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. Approximation theory, wavelets and numerical analysis, (Chattanooga, TN, 2001). J. Comput. Appl. Math. 155(1), 43–67 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Han, B.: Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal. 29(3), 330–353 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Han, B.: Nonhomogeneous wavelet systems in high dimensions. App. Comput. Harmon. Anal. 32(2), 169–196 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Han, B.: Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters. Appl. Comput. Harmon. Anal. 35(2), 200–227 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Han, B.: Symmetric tight framelet filter banks with three high-pass filters. Appl. Comput. Harmon. Anal. 37(1), 140–161 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Han, B., Mo, Q.: Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl. Comput. Harmon. Anal. 18(1), 67–93 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hernández, E., Weiss, g: A First Course on Wavelets. CRC Press Inc., Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kovačević, E., Vetterli, M.: Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for \(\mathbb{R}^n\). IEEE Trans. Inf. Theory 38(2), 533–555 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Krivoshein, A.V.: On construction of multivariate symmetric MRA-based wavelets. Appl. Comput. Harmon. Anal. 36(2), 215–238 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lagarias, J.C., Wang, Y.: Haar type orthonormal wavelet bases in \(R^2\). J. Fourier Anal. Appl. 2(1), 1–14 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lai, M.-J., Stöckler, J.: Construction of multivariate compactly supported tight wavelet frames. Appl. Comput. Harmon. Anal. 21, 324–348 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Meyer, Y.: Ondelettes et op\(\acute{e}\)rateurs. I. Hermann, Paris (1996) [English Translation: Wavelets and operators, Cambridge University Press, 1992]Google Scholar
  32. 32.
    Petukhov, A.: Explicit construction of framelets. Appl. Comput. Harmon. Anal. 11, 313–327 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Petukhov, A., Framelets with many vanishing moments, In: Approximation Theory X (St. Lous, MO, 2002). Innovations in Applied Mathematics, Vanderbitt University Press, Nashville (2001)Google Scholar
  34. 34.
    Petukhov, A.: Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor. Appl. Comput. Harmon. Anal. 17, 198–210 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ron, A., Shen, Z.W.: Affine systems in \(L^2(\mathbb{R}^d)\): the analysis of the analysis operator. J. Funct. Anal. 148, 408–447 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ron, A., Shen, Z.W.: Compactly supported tight affine frames in \(L^2(\mathbb{R}^d)\). Math. Comput. 67, 191–207 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ron, A., Shen, Z.W.: Construction of compactly supported afine frames in \(L^2(\mathbb{R}^d)\). In: Lau, K.S. (ed.) Advances in Wavelets, pp. 27–49. Springer-Verlag, New York (1998)Google Scholar
  38. 38.
    Salvatori, M., Soardi, P.M.: Multivariate tight affine frames with a small number of generators. J. Approx. Theory 127(1), 61–73 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    San Antolín, A., Zalik, R.A.: Some smooth compactly supported tight framelets. Commun. Math. and Appl. 3(3), 345–353 (2012)zbMATHGoogle Scholar
  40. 40.
    San Antolín, A., Zalik, R.A.: Some bivariate smooth compactly supported tight framelets with three generators. Abstr. Appl. Anal. 2013, Article ID 818907 (2013). doi: 10.1155/2013/818907
  41. 41.
    San Antolín, A., Zalik, R.A.: A family of nonseparable scaling functions and compactly supported tight framelets. J. Math. Anal. Appl. 404, 201–211 (2013). doi: 10.1016/j.jmaa.2013.02.040 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Selesnick, I.W.: Smooth wavelet tight frames with zero moments. Appl. Comput. Harmon. Anal. 10, 163–181 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Skopina, M.: On construction of multivariate wavelets with vanishing moments. Appl. Comput. Harmon. Anal. 20(3), 375–390 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Skopina, M.: Tight wavelet frames. (Russian) Dokl. Akad. Nauk 419(1), 26–29; translation in Dokl. Math. 77 (2008), no. 2, 182–185Google Scholar
  45. 45.
    Skopina, M.: On construction of multivariate wavelet frames. Appl. Comput. Harmon. Anal. 27(1), 55–72 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Strichartz, R.S.: Wavelets and self-affine tilings. Constr. Approx. 9(2–3), 327–346 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Velisavljević, V., Beferull-Lozano, B., Vetterli, M., Dragotti, P.L.: Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Trans. Image Proc. 15, 1916–1933 (2006)CrossRefGoogle Scholar
  48. 48.
    Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. London Mathematical Society Student Texts, vol. 37. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de AlicanteAlicanteSpain
  2. 2.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA

Personalised recommendations