Journal of Fourier Analysis and Applications

, Volume 22, Issue 5, pp 1076–1096 | Cite as

Invertibility in the Flag Kernels Algebra on the Heisenberg Group

  • Grzegorz KępaEmail author


Flag kernels are tempered distributions which generalize these of Calderón–Zygmund type. For any homogeneous group \(\mathbb {G}\) the class of operators which acts on \(L^{2}(\mathbb {G})\) by convolution with a flag kernel is closed under composition. In the case of the Heisenberg group we prove the inverse-closed property for this algebra. It means that if an operator from this algebra is invertible on \(L^{2}(\mathbb {G})\), then its inversion remains in the class.


Flag kernel Heisenberg group Inverse-closed 

Mathematics Subject Classification

42B15 42B20 



The author wishes to express his deep gratitude to P.Głowacki and M.Preisner for their helpful advices in preparing the manuscript.


  1. 1.
    Beals, R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44(1), 45–57 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beals, R.: Weighted distribution spaces and pseudodifferential operators. Journal d’Analyse Mathématique 39, 131–187 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bony, J.-M., Chemin, J.-Y.: Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bulletin de la Société Mathématique de France 122(1), 77–118 (1994)MathSciNetGoogle Scholar
  4. 4.
    Calderón, A.P., Zygmund, A.: Algebras of certain singular operators. Am. J. Math. 78(2), 310–320 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Christ, M.: Inversion in some algebras of singular integral operators. Revista Matemática Iberoamericana 4(2), 219–225 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Christ, M., Geller, D.: Singular integral characterization of Hardy spaces on homogeneous groups. Duke Math. J. 51, 547–598 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coré, S., Geller, D.: Convolution on homogeneous groups. J. Math. Anal. Appl. 370, 472–485 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)CrossRefzbMATHGoogle Scholar
  9. 9.
    Głowacki, P.: An inversion problem for singular integral operators on homogeneous groups. Stud. Math. 87, 53–69 (1987)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Głowacki, P.: The Melin calculus for general homogeneous groups. Arkiv för matematik 45, 31–48 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Głowacki, P.: Composition and \(L^2\)-boundedness of flag kernels, Colloq. Math., 118 (2010), 581–585. Correction. Colloq. Math. 120, 331 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Głowacki, P.: \(L^{p}\)-Boundedness of flag kernels on homogeneous groups via symbolic calculus. J. Lie theory 23, 953–977 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Głowacki, P.:The algebra of Calderón-Zygmund kernels on a homogeneous group is inverse-closed, Journal d’Analyse Mathématique (in press)Google Scholar
  14. 14.
    Müller, D., Ricci, F., Stein, E.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I. Invent. Math. 119, 199–233 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nagel, A., Ricci, F., Stein, E.M.: Singular integrals with flag kernels and analysis on quadratic CR manifolds. J. Funct. Anal. 181, 29–118 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nagel, A., Ricci, F., Stein, E.M., Wainger, S.: Singular integrals with flag kernels on homogeneous groups I. Revista Matemática Iberoamericana 28(3), 631–722 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WrocławWrocławPoland

Personalised recommendations