Journal of Fourier Analysis and Applications

, Volume 22, Issue 4, pp 823–853 | Cite as

Generation of Semigroups for Vector-Valued Pseudodifferential Operators on the Torus

  • B. Barraza Martínez
  • R. Denk
  • J. Hernández Monzón
  • T. Nau


We consider toroidal pseudodifferential operators with operator-valued symbols, their mapping properties and the generation of analytic semigroups on vector-valued Besov and Sobolev spaces. Here, we restrict ourselves to pseudodifferential operators with x-independent symbols (Fourier multipliers). We show that a parabolic toroidal pseudodifferential operator generates an analytic semigroup on the Besov space \(B_{pq}^s({\mathbb T}^n,E)\) and on the Sobolev space \(W_p^k({\mathbb T}^n,E)\), where E is an arbitrary Banach space, \(1\le p,q\le \infty \), \(s\in {\mathbb R}\) and \(k\in {\mathbb N}_0\). For the proof of the Sobolev space result, we establish a uniform estimate on the kernel which is given as an infinite parameter-dependent sum. An application to abstract non-autonomous periodic pseudodifferential Cauchy problems gives the existence and uniqueness of classical solutions for such problems.


Pseudodifferential operators Vector-valued Sobolev spaces Toroidal Fourier transform Generation of analytic semigroup 

Mathematics Subject Classification

35S05 47D06 35R20 



The authors would like to thank COLCIENCIAS (Project 121556933488) and DAAD for the financial support.


  1. 1.
    Agranovič, M.S.: Spectral properties of elliptic pseudodifferential operators on a closed curve. Funktsional. Anal. i Prilozhen. 13(4), 54–56 (1979)MathSciNetGoogle Scholar
  2. 2.
    Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I. Monographs in Mathematics, vol. 89. Birkhäuser Boston, Inc., Boston (1995). Abstract linear theoryCrossRefzbMATHGoogle Scholar
  3. 3.
    Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr. 186, 5–56 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amann, H.: Anisotropic function spaces and maximal regularity for parabolic problems. Part 1. Jindrich Necas Center for Mathematical Modeling Lecture Notes, 6. Matfyzpress, Prague (2009). Function spacesGoogle Scholar
  5. 5.
    Amann, H., Walker, C.: Local and global strong solutions to continuous coagulation-fragmentation equations with diffusion. J. Differ. Equ. 218(1), 159–186 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Amosov, B.A.: On the theory of pseudodifferential operators on the circle. Russ. Math. Surv. 43(3), 197–198 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Arendt, W., Bu, S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. (2) 47(1), 15–33 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  10. 10.
    Barraza Martinez, B., Denk, R., Hernandez Monzon, J.: Analytic semigroups of pseudodifferential operators on vector-valued sobolev spaces. Bull. Braz. Math. Soc. N.S. (2) 45(2), 197–242 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barraza Martinez, B., Denk, R., Monzon, J.K.: Pseudodifferential operatorswith non-regular operator-valued symbols. Manuscr. Math. 144(3–4), 349–372 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bu, S., Kim, J.-M.: Operator-valued Fourier multiplier theorems on \(L_p\)-spaces on \(\mathbb{T}^d\). Arch. Math. (Basel) 82(5), 404–414 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cardona, D.: Weak type \((1,1)\) bounds for a class of periodic pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 5(4), 507–515 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Delgado, J.: \(L^p\)-bounds for pseudo-differential operators on the torus. Pseudo-differential Operators, Generalized Functions and Asymptotics. Operator Theory: Advances and Applications, vol. 231. Birkhäuser, Basel AG (2013)Google Scholar
  15. 15.
    Denk, R., Nau, T.: Discrete Fourier multipliers and cylindrical boundary-value problems. Proc. R. Soc. Edinb. Sect. A 143(6), 1163–1183 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Denk, R., Seiler, J.: Maximal \(l^p\)-regularity of non-local boundary value problems. Monatsh. Math 176, 53–80 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Favini, A., Guidetti, D., Yakubov, Y.: Abstract elliptic and parabolic systems with applications to problems in cylindrical domains. Adv. Differ. Equ. 16(11–12), 1139–1196 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Guidetti, D.: On elliptic systems in \(L^1\). Osaka J. Math. 30, 397–429 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kumano-go, H.: Pseudodifferential Operators. MIT Press, Cambridge (1981). Translated from the Japanese by the author, Rémi Vaillancourt and Michihiro NagasezbMATHGoogle Scholar
  20. 20.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 16. Birkhäuser, Basel (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    McLean, W.: Local and global descriptions of periodic pseudodifferential operators. Math. Nachr. 150, 151–161 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Melo, S.T.: Characterizations of pseudodifferential operators on the circle. Proc. Am. Math. Soc. 125(5), 1407–1412 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Molahajloo, S., Wong, M.W.: Ellipticity, Fredholmness and spectral invariance of pseudo-differential operators on \(\mathbb{S}^1\). J. Pseudo-Differ. Oper. Appl. 1(2), 183–205 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nau, T., Saal, J.: \(H^\infty \)-calculus for cylindrical boundary value problems. Adv. Differ. Equ. 17(7–8), 767–800 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Rabinovich, V.S.: Pseudodifferential operators with operator valued symbols. Fredholm theory and exponential estimates of solutions. Mem. Differ. Equ. Math. Phys. 53, 127–153 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ruzhansky, M., Turunen, V.: On the Fourier analysis of operators on the torus. Modern Trends in Pseudo-differential Operators. Operator Theory: Advances and Applications, vol. 172, pp. 87–105. Birkhäuser, Basel (2007)CrossRefGoogle Scholar
  27. 27.
    Ruzhansky, M., Turunen, V.: On the toroidal quantization of periodic pseudo-differential operators. Numer. Funct. Anal. Optim. 30(9–10), 1098–1124 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ruzhansky, M., Turunen, V.: Pseudo-differential Operators and Symmetries. Pseudo-Differential Operators. Theory and Applications, vol. 2. Birkhäuser, Basel (2010). Background analysis and advanced topicsCrossRefzbMATHGoogle Scholar
  29. 29.
    Saranen, J., Wendland, W.L.: The Fourier series representation of pseudodifferential operators on closed curves. Complex Variables Theory Appl. 8(1–2), 55–64 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)zbMATHGoogle Scholar
  31. 31.
    Turunen, V.: Commutator characterization of periodic pseudodifferential operators. Z. Anal. Anwendungen 19(1), 95–108 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Turunen, V., Vainikko, G.: On symbol analysis of periodic pseudodifferential operators. Z. Anal. Anwendungen 17(1), 9–22 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wong, M.W.: Discrete Fourier Analysis. Pseudo-differential Operators. Theory and Applications. Birkhäuser, Basel (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. Barraza Martínez
    • 1
  • R. Denk
    • 2
  • J. Hernández Monzón
    • 1
  • T. Nau
    • 2
  1. 1.Departamento de MatemáticasUniversidad del NorteBarranquillaColombia
  2. 2.Fachbereich für Mathematik und StatistikUniversität KonstanzKonstanzGermany

Personalised recommendations