Journal of Fourier Analysis and Applications

, Volume 21, Issue 5, pp 1077–1104 | Cite as

On the Bilinear Hörmander Classes in the Scales of Triebel-Lizorkin and Besov Spaces

  • Virginia Naibo


Boundedness properties on the scales of inhomogeneous Triebel-Lizorkin and Besov spaces of positive smoothness are proved for pseudodifferential operators with symbols belonging to certain bilinear Hörmander classes. These include classes of symbols of order zero for which the associated bilinear operators have Calderón-Zygmund kernels but are not necessarily bounded in the setting of Lebesgue spaces as well as classes that go beyond the Calderón-Zygmund theory. In addition, it is established that boundedness estimates on Lebesgue spaces for all operators with symbols in a given Hörmander class imply Besov estimates for such operators. A related result is obtained for general bilinear multiplier operators.


Bilinear pseudodifferential operators Hörmander classes  Triebel-Lizorkin and Besov spaces 

Mathematics Subject Classification

Primary: 35S0, 47G30 Secondary: 42B20, 42B35 



Partial support by NSF under Grant DMS 1101327 is acknowledged.


  1. 1.
    Bényi, Á.: Bilinear pseudodifferential operators with forbidden symbols on Lipschitz and Besov spaces. J. Math. Anal. Appl. 284(1), 97–103 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bényi, Á., Bernicot, F., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators II. Indiana Univ. Math. J. 62(6), 1733–1764 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bényi, Á., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators. Integr. Equ. Oper. Theory 67(3), 341–364 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseudodifferential operators. Commun. Partial Differ. Equ. 28(5–6), 1161–1181 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)Google Scholar
  6. 6.
    Grafakos, L., Torres, R.H.: Multilinear Calderón-Zygmund theory. Adv. Math. 165(1), 124–164 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Herbert, J., Naibo, V.: Bilinear pseudodifferential operators with symbols in Besov spaces. J. Pseudo Differ. Oper. Appl. 5(2), 231–254 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lacey, M., Thiele, C.: \(L^p\) estimates on the bilinear Hilbert transform for \(2<p <\infty \). Ann. Math. (2) 146(3), 693–724 (1997)Google Scholar
  9. 9.
    Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. Math. 149(2), 475–496 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Michalowski, N., Rule, D., Staubach, W.: Multilinear pseudodifferential operators beyond Calderón-Zygmund theory. J. Math. Anal. Appl. 414(1), 149–165 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Miyachi, A., Tomita, N.: Calderón-Vaillancourt-type theorem for bilinear operators. Indiana Univ. Math. J. 62(4), 1165–1201 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rodríguez-López, S., Staubach, W.: Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators. J. Funct. Anal. 264(10), 2356–2385 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Runst, T.: Pseudodifferential operators of the “exotic” class \(L^0_{1,1}\) in spaces of Besov and Triebel-Lizorkin type. Ann. Glob. Anal. Geom. 3(1), 13–28 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Triebel, H.: A localization property for \(B^s_{pq}\) and \(F^s_{pq}\) spaces. Studia Math. 109(2), 183–195 (1994)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Triebel, H.: Theory of function spaces. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010. Reprint of 1983 edition. Also published in 1983 by Birkhäuser VerlagGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsKansas State UniversityManhattanUSA

Personalised recommendations