Journal of Fourier Analysis and Applications

, Volume 21, Issue 5, pp 1018–1033 | Cite as

Factoring Matrices into the Product of Circulant and Diagonal Matrices

  • Marko Huhtanen
  • Allan Perämäki


A generic matrix \(A\in \,\mathbb {C}^{n \times n}\) is shown to be the product of circulant and diagonal matrices with the number of factors being \(2n-1\) at most. The demonstration is constructive, relying on first factoring matrix subspaces equivalent to polynomials in a permutation matrix over diagonal matrices into linear factors. For the linear factors, the sum of two scaled permutations is factored into the product of a circulant matrix and two diagonal matrices. Extending the monomial group, both low degree and sparse polynomials in a permutation matrix over diagonal matrices, together with their permutation equivalences, constitute a fundamental sparse matrix structure. Matrix analysis gets largely done polynomially, in terms of permutations only.


Circulant matrix Diagonal matrix Sparsity structure  Matrix factoring Polynomial factoring Multiplicative Fourier compression 

Mathematics Subject Classification

15A23 65T50 65F50 12D05 


  1. 1.
    Bhatia, R.: Trimming, truncating and averaging of matrices. Am. Math. Mon. 107, 602–608 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brualdi, R., Ryser, H.: Combinatorial Matrix Theory. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(2), 418–477 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benzi, M., Haws, J.C., Tůma, M.: Preconditioning highly indefinite and nonsymmetric matrices. SIAM J. Sci. Comput. 22(4), 1333–1353 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Curtis, C.W., Reiner, I.: Reiner, Representation Theory of Finite Groups and Associative Algebras. AMS Chelsea Publishing, NewYork (1962)zbMATHGoogle Scholar
  6. 6.
    Davis, P.: Circulant Matrices. Wiley, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Duff, I.S., Koster, J.: The design and use of algorithms for permuting large entries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl. 20, 889–901 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Friedland, S.: Maximality of the monomial group. Lin. Multilin. Algebra 18, 1–7 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  10. 10.
    Huhtanen, M.: Approximating ideal diffractive optical systems. J. Math. Anal. Appl. 345, 53–62 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huhtanen, M.: The product of matrix subspaces. Linear Algebra Appl. 471, 150–168 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huhtanen, M., Ruotsalainen, S.: Factoring in the metaplectic group and optics. Oper. Matrices 5, 173–181 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Laffey, T.: Conjugacy and factorization results on matrix groups, functional analysis and operator theory. Pol. Acad. Sci. Wars. 1994, 203–221 (1992)Google Scholar
  14. 14.
    Milne, J.S.: Algebraic Geometry. (2012)
  15. 15.
    Müller-Quade, J., Aagedal, H., Beth, T., Schmid, M.: Algorithmic design of diffractive optical systems for information processing. Physica D 120, 196–205 (1998)CrossRefGoogle Scholar
  16. 16.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  17. 17.
    Rojas, J.M.: Some speed-ups and speed limits for real algebraic geometry. J. Complex. 16, 552–571 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schmid, M., Steinwandt, R., Müller-Quade, J., Rötteler, M., Beth, T.: Decomposing a matrix into circulant and diagonal factors. Linear Algebra Appl. 306, 131–143 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rotman, J.J.: An Introduction to the Theory of Groups. Springer, New York (1994)Google Scholar
  20. 20.
    Taussky, O.: The characteristic polynomial and the characteristic curve of a pencil of matrices with complex entries, Österreich. Akad. Wiss. Math-Nat. Kl. Sitzungsber., II 195 (1986), no. 1–3, pp. 175–178Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of OuluOulu 57Finland
  2. 2.Department of Mathematics and Systems AnalysisAalto UniversityEspooFinland

Personalised recommendations