Partial Data for the Neumann-to-Dirichlet Map

  • Francis J. Chung


We show that measurements of a Neumann-to-Dirichlet map, with either inputs or outputs restricted to part of the boundary, can determine an electric potential on that domain. Given a convexity condition on the domain, either the set on which measurements are taken, or the set on which input functions are supported, can be made to be arbitrarily small. The result is analogous to the result by Kenig, Sjöstrand, and Uhlmann for the Dirichlet-to-Neumann map. The main new ingredient in the proof is an improved Carleman estimate for the Schrödinger operator with appropriate boundary conditions. This is proved by Fourier analysis of a conjugated operator along the boundary of the domain.


Neumann–Dirichlet map Calderón problem Inverse problems Carleman estimates 

Mathematics Subject Classification




The author would like to thank Mikko Salo for introducing him to this problem, for sharing the idea behind Proposition 3.1, for reading over the manuscript, and for several other helpful conversations. This research was partially supported by the Academy of Finland. Part of this work was also done at the University of Chicago, and here the author would also like to thank Carlos Kenig for his time and support. The author would also like to thank the referee for several helpful comments.


  1. 1.
    Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Bukhgeim, A.L., Uhlmann, G.: Recovering a potential from partial Cauchy data. Commun. PDE 27(3,4), 653–668 (2002)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Caro, P., Ola, P., Salo, M.: Inverse boundary value problem for Maxwell equations with local data. Commun. PDE 34(11), 1425–1464 (2009)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chung, F.J.: A partial data result for the magnetic Schrödinger inverse problem. Anal. PDE 7, 117–157 (2014)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Dos Santos Ferreira, D., Kenig, C.E., Sjöstrand, J., Uhlmann, G.: Determining a magnetic Schrödinger operator from partial cauchy data. Commun. Math. Phys. 271, 467–488 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Guillarmou, C., Tzou, L.: Calderón inverse problem with partial Cauchy data on Riemannian surfaces. Duke Math. J. 158, 83–120 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Haberman, B., Tataru, D.: Uniqueness in Calderón’s problem with Lipschitz conductivities. Duke Math. J. 162, 497–516 (2013)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hyvönen, N., Piiroinen, P., Seiskari, O.: Point measurements for a Neumann-to-Dirichlet map and the Calderón problem in the plane. SIAM J. Math. Anal. 44, 3526–3536 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Isakov, V.: On uniqueness in the inverse conductivity problem with local data. Inverse Probab. Image 1(1), 95–105 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Imanuvilov, O., Uhlmann, G., Yamamoto, M.: The Calderón problem with partial data in two dimensions. J. Am. Math. Soc. 23, 655–691 (2010)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Imanuvilov, O., Uhlmann, G., Yamamoto, M.: Inverse boundary value problem by partial data for Neumann-to-Dirichlet-map in two dimensions.
  12. 12.
    Knudsen, K., Salo, M.: Determining nonsmooth first order terms from partial boundary measurements. Inverse Probab. Image 1, 349–369 (2007)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kenig, C.E., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165, 561–591 (2007)CrossRefGoogle Scholar
  14. 14.
    Kenig, C.E., Salo, M.: The Calderón problem with partial data on manifolds and applications. Anal. PDE. 6, 2003–2048 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kenig, C.E., Salo, M.: Recent progress in the Calderón problem with partial data. Contemp. Math. 615, 193–222 (2014)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Krupchyk, K., Uhlmann, G.: Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential. Commun. Math. Phys. 312, 1781–1801 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements. Commun. Pure Appl. Math. 37, 289–298 (1984)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Nachman, A.: Reconstructions from boundary measurements. Ann. Math. 128, 531–587 (1988)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Salo, M., Tzou, L.: Inverse problems with partial data for a Dirac system: a Carleman estimate approach. Adv. Math. 225(1), 487–513 (2010)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary problem. Ann. Math. 125, 153–169 (1987)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Zhang, G.: Uniqueness in the Calderón problem with partial data for less smooth conductivities. Inverse Probab. Image 28, 105008 (2012)CrossRefGoogle Scholar
  22. 22.
    Zworski, M.: Semiclassical Analysis. AMS Press, New York (2012)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations