Journal of Fourier Analysis and Applications

, Volume 20, Issue 4, pp 679–714 | Cite as

Hagedorn Wavepackets in Time-Frequency and Phase Space

  • Caroline Lasser
  • Stephanie Troppmann


The Hermite functions are an orthonormalbasis of the space of square integrable functions with favourable approximation properties. Allowing for a flexible localization in position and momentum, the Hagedorn wavepackets generalize the Hermite functions also to several dimensions. Using Hagedorn’s raising and lowering operators, we derive explicit formulas and recurrence relations for the Wigner and FBI transform of the wavepackets and show their relation to the Laguerre polyomials.


Hermite functions Hagedorn wavepackets Wigner transform  FBI transform Husismi transform Ladder operators 

Mathematics Subject Classification

42C05 42A38 65R10 



This research was supported by the German Research Foundation (DFG), Collaborative Research Center SFB-TR 109. We thank the anonymous referees for pointing us to the generalized coherent states. We also thank Matthias Nützel and Ilja Klebanov for their careful reading of the manuscript.


  1. 1.
    Ali, S., Antoine, J., Gazeau, J.: Coherent States, Wavelets and Their Generalizations, Springer, Berlin (2000).Google Scholar
  2. 2.
    Combescure, M.: The squeezed states approach of a semi-classical limit of the time dependent Schrödinger equation. J. Math. Phys. 33, 3870–3880 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics. Springer, Berlin (2012)Google Scholar
  4. 4.
    Daboul, J., Mizrahi, S.: \(O(N)\) symmetries, sum rules for generalized Hermite polynomials and squeezed states. J. Math. Phys. A 38, 427–448 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    de Bruijn, N.: Uncertainty principles in Fourier analysis. In: Inequalities (Proc. Sympos. Wright- Patterson Air Force Base, Ohio, 1965), pp. 57–71. Academic Press, New York (1967)Google Scholar
  6. 6.
    De Gosson, M.: Symplectic Methods in Harmonic Analysis and Mathematical Physics. Birkhäuser, Basel (2011)Google Scholar
  7. 7.
    Faou, E., Gradinaru, V., Lubich, C.: Computing semiclassical quantum dynamics with Hagedorn wavepackets. SIAM J. Sci. Comput. 31, 3027–3041 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Feldheim, E.: Quelques nouvelles relations pur les polynomes d’Hermite. J. Lond. Math. Soc. 13, 22–29 (1937)MathSciNetGoogle Scholar
  9. 9.
    Flandrin, P.: A note on reassigned Gabor spectrograms of Hermite functions. J. Fourier An. Appl. (To appear)Google Scholar
  10. 10.
    Folland, G.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)Google Scholar
  11. 11.
    Hagedorn, G.: Semiclassical quantum mechanics III: the large order asymptotics and more general states. Ann. Phys. 135, 58–70 (1981)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hagedorn, G.: Semiclassical quantum mechanics IV: the large order asymptotics and more general states in more than one dimension. Ann. Inst. Henri Poincaré Sect. A 42, 363–374 (1985)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hagedorn, G.: Raising and lowering operators for semiclassical wave packets. Ann. Phys. 269, 77–104 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hagedorn, G., Joye, A.: Exponentially accurate semiclassical dynamics: propagation, localization, Ehrenfest times, scattering, and more general states. Ann. Henri Poincaré 1, 837–883 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hillery, M., O’Connell, R., Scully, M., Wigner, E.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121–167 (1984)Google Scholar
  16. 16.
    Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. European Mathematical Society, Zurich (2008)Google Scholar
  17. 17.
    Rainville, E.: Special Functions. Macmillan, New York (1960)Google Scholar
  18. 18.
    Simon, R., Sudarshan, C., Mukunda, N.: Gaussian pure states in quantum mechnics and the symplectic group. Phys. Rev. A 37, 3028–3038 (1988)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Thaller, B.: Visual Quantum Mechanics. Springer, New York (2000)Google Scholar
  20. 20.
    Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Princeton University Press, Princeton (1993)Google Scholar
  21. 21.
    Vilenkin, N., Klimyk, A.: Representation of Lie Groups and Special Functions, vol. 2. Kluwer, Dordrecht (1993)Google Scholar
  22. 22.
    Wong, M.: Weyl Transforms. Springer, Berlin (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany

Personalised recommendations