The Sharp Weighted Bound for Multilinear Maximal Functions and Calderón–Zygmund Operators
Article
First Online:
- 383 Downloads
- 6 Citations
Abstract
We investigate the weighted bounds for multilinear maximal functions and Calderón–Zygmund operators from \(L^{p_1}(w_1)\times \cdots \times L^{p_m}(w_m)\) to \(L^{p}(v_{\vec {w}})\), where \(1<p_1,\cdots ,p_m<\infty \) with \(1/{p_1}+\cdots +1/{p_m}=1/p\) and \(\vec {w}\) is a multiple \(A_{\vec {P}}\) weight. We prove the sharp bound for the multilinear maximal function for all such \(p_1,\ldots , p_m\) and prove the sharp bound for \(m\)-linear Calderón–Zymund operators when \(p\ge 1\).
Keywords
Multiple weights Multilinear maximal function Multilinear Calderón–Zygmund operators Weighted estimatesMathematics Subject Classification
42B20 42B25 47H60Notes
Acknowledgments
The authors thank Carlos Pérez for helping improve the quality of this article.
References
- 1.Buckley, S.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Amer. Math. Soc. 340, 253–272 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Christ, M., Journé, J.-L.: Polynomial growth estimates for multilinear singular integral operators. Acta Math. 159, 51–80 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Coifman, R.R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212, 315–331 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
- 4.Coifman, R.R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28, 177–202 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
- 5.Cruz-Uribe, D., Martell, J.M., Pérez, C.: Sharp weighted estimates for classical operators. Adv. Math. 229, 408–441 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Damián, W. Lerner A.K., Pérez C.: Sharp weighted bounds for multilinear maximal functions and Calderón–Zygmund operators, available at http://arxiv.org/abs/1211.5115
- 7.Grafakos, L.: Modern Fourier Analysis, 2nd edn. Springer, New York (2008)Google Scholar
- 8.Grafakos, L., Torres, R.H.: Multilinear Calderón–Zygmund theory. Adv. Math. 165, 124–164 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Hytönen, T.P.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. 175, 1473–1506 (2012)CrossRefzbMATHGoogle Scholar
- 10.Hytönen T. P.: The \(A_2\) theorem: Remarks and complements, preprint, available at http://arxiv.org/abs/1212.3840
- 11.Hytönen T., Lacey M.: The \(A_p\)-\(A_\infty \) inequality for general Calderón–Zygmund operators. Indiana Univ. Math. J. 61, 2041–2052 (2012)Google Scholar
- 12.Hytönen T., Lacey M., Pérez C.: Sharp weighted bounds for \(q\)-variation of singular integrals. Bull. Lond. Math. Soc. 45, 529–540 (2013)Google Scholar
- 13.Hytönen T., Pérez C.: Sharp weighted bounds involving \(A_\infty \). J. Anal. & P.D.E. 6, 777–818 (2013)Google Scholar
- 14.Kenig, C.E., Stein, E.M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 15.Lacey, M., Petermichl, S., Reguera, M.: Sharp \(A_2\) inequality for Haar shift operators. Math. Ann. 348, 127–141 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 16.Lerner, A.K.: An elementary approach to several results on the Hardy–Littlewood maximal operator. Proc. Am. Math. Soc. 136, 2829–2833 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.Lerner, A.K.: A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. 14, 3159–3170 (2013)MathSciNetGoogle Scholar
- 18.Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory. Adv. Math. 220, 1222–1264 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
- 19.Moen, K.: Sharp weighted bounds without testing or extrapolation. Arch. Math. 99, 457–466 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Pérez, C., Torres, R.H.: Sharp maximal function estimates for multilinear singular integrals. Contemp. Math. 320, 323–331 (2003)CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2014