Journal of Fourier Analysis and Applications

, Volume 20, Issue 2, pp 321–361 | Cite as

The Lagrangian Radon Transform and the Weil Representation

  • Giuseppe Marmo
  • Peter W. Michor
  • Yury A. Neretin


We consider the operator \(\mathcal {R}\), which sends a function on \({\mathbb {R}}^{2n}\) to its integrals over all affine Lagrangian subspaces in \({\mathbb {R}}^{2n}\). We discuss properties of the operator \(\mathcal {R}\) and of the representation of the affine symplectic group in several function spaces on \({\mathbb {R}}^{2n}\).


Radon transform Symplectic group Weil representation Siegel half-plane Intertwining operators Invariant differential operators Fourier transform 

Mathematics Subject Classification

44A12 46F12 35E99 22E46 


  1. 1.
    Asorey, M., Facchi, P., Man’ko, V.I. et al.: Generalized quantum tomographic maps. Phys. Scr. 85, 6 (2012). Article number 065001Google Scholar
  2. 2.
    Berceanu, S.: Coherent states associated to the real Jacobi group. XXVI Workshop on Geometrical Methods in Physics. AIP Conference Proceedings, 956, pp. 233–239. American Institute of Physics, Melville, NY (2007)Google Scholar
  3. 3.
    Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group. Progress in Mathematics, 163, xiv+213 p., Birkhäuser Verlag, Basel (1998)Google Scholar
  4. 4.
    Esposito, G., Marmo, G., Sudarshan, G.: From Classical to Quantum Mechanics. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Integral geometry in affine and projective spaces. J. Sov. Math. 18(1), 39–167 (1982)CrossRefGoogle Scholar
  6. 6.
    Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Selected Topics in Integral Geometry. American Mathematical Society, Providence, RI (2003)MATHGoogle Scholar
  7. 7.
    Gonzalez, F.B., Kakehi, T.: Invariant differential operators and the range of the matrix Radon transform. J. Funct. Anal. 241(1), 232–267 (2006)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Grinberg, E.L.: On images of Radon transforms. Duke Math. J. 52(4), 939–972 (1985)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Helgason, S.: Integral Geometry and Radon transforms, 2nd edn. Birkhäuser Boston (1999)Google Scholar
  10. 10.
    Helgason, S.: Geometric Analysis on Symmetric Spaces. Mathematical Surveys and Monographs, 39. American Mathematical Society, Providence, RI (1994)Google Scholar
  11. 11.
    Hua, L.K.: Harmonic analysis of functions of several complex variables in classical domains. Beijing (1958) (Chinese); Russian translation: Moscow, Inostrannaya literatura (1959); English translation: American Mathematical Society, Providence (1963)Google Scholar
  12. 12.
    Ibort, A., Man’ko, V.I., Marmo, G., et al.: A pedagogical presentation of a \(C^*\)-algebraic approach to quantum tomography. Phys. Scripta 84, 6 (2011). Article number 06500Google Scholar
  13. 13.
    Ibort, A., Man’ko, V.I., Marmo, G., et al.: On the tomographic picture of quantum mechanics. Phys. Lett. A 374(26), 2614–2617 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ibort, A., Lopez-Yela, A., Mank’ko, V.I., et al.: On the tomographic description of classical fields. Phys. Lett. A 376(17), 1417–1425 (2012)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kobayashi, T., Orsted, B., Pevzner, M.: Geometric analysis on small unitary representations of \({\rm GL}(N,\mathbb{R})\). J. Funct. Anal. 260(6), 1682–1720 (2011)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Man’ko, O., Man’ko, V., Marmo, G.: Star-product of generalized Wigner-Weyl symbols on \(SU(2)\)-group, deformations, and tomographic probability distribution. Phys. Scr. 62, 6, 446–452 (2000)Google Scholar
  17. 17.
    Man’ko, V.I., Marmo, G., Simoni, A., et al.: Tomography in abstract Hilbert space. Open Syst. Inf. Dyn. 13(3), 239–253 (2006)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Man’ko, V.I., Marmo, G., Simoni, A., et al.: Tomograms in the quantum-classical transition. Phys. Lett. A 343(4), 251–266 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Man’ko, V.I., Marmo, G., Simoni, A., et al.: A tomographic setting for quasidistribution functions. Rep. Math. Phys. 61(3), 337–359 (2008)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Man’ko, V.I., Marmo, G., Simoni, A., et al.: On the meaning and interpretation of tomography in abstract Hilbert spaces. Phys. Lett. A 351(1–2), 1–12 (2006)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Michor, P.: Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence, RI (2008) MR MR2428390Google Scholar
  22. 22.
    Neretin, Y.A.: Categories of Symmetries and Infinite-Dimensional Groups. London Mathematical Society Monographs. New Series. 16. Clarendon Press, Oxford (1996)Google Scholar
  23. 23.
    Neretin, Y.A.: Lectures on Gaussian Integral Operators and Classical Groups. European Mathematical Society (2011)Google Scholar
  24. 24.
    Nievergelt, Y.: Exact reconstruction filters to invert Radon transforms with finite elements. J. Math. Anal. Appl. 120(1), 288–314 (1986)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Ournycheva, E., Rubin, B.: Method of mean value operators for Radon transforms in the space of matrices. Int. J. Math. 19(3), 245–283 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Petrov, E.E.: The Radon transform in matrix spaces and in Grassmann manifolds (Russian). English translation: Soviet Math. Dokl. 8, 1504–1507 (1967)Google Scholar
  27. 27.
    Petrov, E.E.: The Radon transformation in a matrix space (Russian). Trudy Sem. Vektor. Tenzor. Anal. 15, 279–315 (1970)MATHMathSciNetGoogle Scholar
  28. 28.
    Vergne, M., Rossi, H.: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math. 136(1–2), 1–59 (1976)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giuseppe Marmo
    • 1
  • Peter W. Michor
    • 2
  • Yury A. Neretin
    • 2
    • 3
    • 4
  1. 1.Dipartimento di FisicaUniversitá di Napoli Federico II and INFN, Sezione di NapoliNapoliItaly
  2. 2.Fakultät für MathematikUniversität WienWienAustria
  3. 3.Institute for Theoretical and Experimental PhysicsMoscowRussia
  4. 4.MechMath DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations