Skip to main content
Log in

Multivariate Hörmander-Type Multiplier Theorem for the Hankel transform

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let \(\mathcal{H}(f)(x)=\int_{(0,\infty)^{d}} f(\lambda) E_{x}(\lambda) d\nu(\lambda )\), be the multivariate Hankel transform, where \(E_{x}(\lambda)=\prod_{k=1}^{d} (x_{k} \lambda_{k})^{-\alpha _{k}+1/2}J_{\alpha_{k}-1/2}(x_{k} \lambda_{k})\), with (λ)=λ 2α , α=(α 1,…,α d ). We give sufficient conditions on a bounded function m(λ) which guarantee that the operator \(\mathcal{H}(m\mathcal{H} f)\) is bounded on L p() and of weak-type (1,1), or bounded on the Hardy space H 1((0,∞)d,) in the sense of Coifman-Weiss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexopoulos, G.: Spectral multipliers on Lie groups of polynomial growth. Proc. Am. Math. Soc. 120(3), 973–979 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces: an Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  3. Betancor, J.J., Castro, A.J., Curbelo, J.: Spectral multipliers for multidimensional Bessel operators. J. Fourier Anal. Appl. 17(5), 932–975 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Betancor, J.J., Dziubański, J., Torrea, J.L.: On Hardy spaces associated with Bessel operators. J. Anal. Math. 107, 195–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloom, W.R., Xu, Z.: Fourier multipliers for L p on Chébli-Trimeche hypergroups. Proc. Lond. Math. Soc. 80(3), 643–664 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christ, M.: L p bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328(1), 73–81 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duoandikoetxea, J.: Fourier Analysis. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  9. Dziubański, J., Preisner, M.: Multiplier theorem for Hankel transform on Hardy spaces. Monatshefte Math. 159, 1–12 (2010)

    Article  MATH  Google Scholar 

  10. Gosselin, J., Stempak, K.: A weak-type estimate for Fourier-Bessel multipliers. Proc. Am. Math. Soc. 106(3), 655–662 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garrigós, G., Seeger, A.: Characterizations of Hankel multipliers. Math. Ann. 342(1), 31–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gasper, G., Trebels, W.: Necessary conditions for Hankel multipliers. Indiana Univ. Math. J. 31(3), 403–414 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haimo, D.T.: Integral equations associated with Hankel convolutions. Trans. Am. Math. Soc. 116, 330–375 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hebisch, W., Zienkiewicz, J.: Multiplier theorems on generalized Heisenberg groups II. Colloq. Math. 69(1), 29–36 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Hörmander, L.: Estimates for translation invariant operators in L p spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972)

    MATH  Google Scholar 

  17. Martini, A.: Algebras of differential operators on Lie groups and spectral multipliers. Ph.D. Thesis, Scuola Normale Superiore Pisa (2009)

  18. Mauceri, G., Meda, S.: Vector-valued multipliers on stratified groups. Rev. Mat. Iberoam. 6(3–4), 141–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Müller, D., Stein, E.M.: On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. 73, 413–440 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Sikora, A.: Multivariable spectral multipliers and analysis of quasielliptic operators on fractals. Indiana Univ. Math. J. 58(1), 317–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein, E.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  22. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  23. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clareoton Press, Oxford (1937)

    Google Scholar 

  24. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  25. Uchiyama, A.: A maximal function characterization of H p on the space of homogeneous type. Trans. Am. Math. Soc. 262(2), 579–592 (1980)

    MathSciNet  MATH  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  27. Wróbel, B.: Multivariate spectral multipliers for tensor product orthogonal expansions. Monatshefte Math. 168(1), 125–149 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alessio Martini for discussions on spectral multipliers, Adam Nowak and Tomasz Z. Szarek for their useful remarks, Jacek Zienkiewicz for pointing out to us Example 5.1, and the referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Preisner.

Additional information

Communicated by Hans G. Feichtinger.

The research was partially supported by Polish funds for sciences, grants: N N201 397137 and N N201 412639, MNiSW, NCN, and research project 2011/01/N/ST1/01785, NCN.

Appendix

Appendix

Proof of (1.14)

The proof of Theorem 1.3 actually shows that

(5.1)

Now, using (1.13) we write n u (λ)=Ξ(λ)(λ 1+⋯+λ d )iu, so that \(n_{u}(\lambda _{1}^{2},\ldots,\lambda_{d}^{2})=m_{u}(\lambda)\). We claim that

$$ \sup_{j\in\mathbb{Z}}\big\|\eta(\cdot)n_u \bigl(2^j\cdot\bigr)\big\|_{\mathcal{L}_{s}^\infty(\mathbb{R}^d)}\leq C_{s}\big(1+|u|\big)^{s}, \quad s>0. $$
(5.2)

Using (5.2) and combining it with (5.1), we get \(\|L^{iu}\|_{L^{1}(X)\to L^{1,\infty}(X) }\leq C_{\varepsilon }(1+|u|)^{Q/2+\varepsilon}\). Since \(\|L^{iu}\|_{L^{2}(X)\to L^{2}(X)}=1\), using the Marcinkiewicz interpolation theorem, see, e.g. [8, (2.2) p. 30], together with a duality argument, we obtain (1.14) for all 1<p<∞.

Now, we sketch the proof of (5.2). Let \(B_{p,q}^{s}\), 1≤p,q≤∞, s≥0, be the Besov space, as defined in [2, p. 141]. It is known, see [2, Theorem 6.2.4 (10), p.142], that \(B_{\infty, q}^{s}\) is the real interpolation space of the spaces \(\mathcal{L}_{s}^{\infty}=\mathcal{L}_{s}^{\infty}(\mathbb{R}^{d})\), precisely

$$ \bigl(\mathcal{L}_{s_0}^\infty,\mathcal{L}_{s_1}^\infty \bigr)_{\theta, q}=B_{\infty, q}^s, \quad s=(1-\theta)s_0+\theta s_1,\quad0<\theta<1, \quad1\leq q\leq\infty. $$
(5.3)

Moreover, from [2, Theorem 6.2.4 (9), p.142], we have

$$ \|f\|_{\mathcal{L}_{s}^\infty}\leq C_s \|f\|_{B_{\infty,1}^s}, \quad f\in B_{\infty,1}^s,\quad s>0. $$
(5.4)

For general Banach spaces X and Y, one has

$$ \|x\|_Z\leq C_{\theta,q}\|x\| _X^{1-\theta}\|y\|_Y^{\theta},\quad Z=(X,Y)_{\theta,q},\quad 0<\theta<1, $$
(5.5)

see [24, Theorem (g), p. 25]. Now, it is straightforward to check that (5.2) is true for s=2n, \(n\in\mathbb{N}\cup\{0\}\). Using the latter observation, (5.4), (5.3) with q=1, and (5.5) with \(X=\mathcal{L}_{2n}^{\infty}\), \(Y=\mathcal{L}_{2n+2}^{\infty}\), for s=(1−θ)2n+θ(2n+2), 0<θ<1, we obtain

 □

The following example shows that in the multivariable case for functions n(λ) supported in A 1/2,2 the Sobolev norms \(\| n\|_{W_{2}^{s}(\mathbb{R}^{d})}\) do not control the Sobolev norms \(\| m\|_{W_{2}^{s'}(\mathbb{R}^{d})}\) (even for certain range s′ smaller than s) where n and m are related by (1.8).

Example 5.1

Let F(x,y) be a function defined on \(\mathbb{R}\times\mathbb{R}^{\ell}\) and s>0. Observe that

$$ \| F\|_{W_2^s(\mathbb{R}^{1+\ell})}^2 \sim\| \hat{F}\| ^2_{L^2(\mathbb{R}^{1+\ell})} + \int_{\mathbb{R}^\ell}\int _{\mathbb{R}} \big|\hat{F}(\xi, \eta)\big|^2 \bigl(| \xi|^{2s}+|\eta|^{2s} \bigr) d\xi d\eta, $$
(5.6)

Moreover, it can be shown that for every r>0 there is a constant C>0 such that for f supported in the interval \((\frac{1}{2}, 2 )\) one has

$$ C^{-1} \| \tilde{f} \|_{ W^r_2(\mathbb{R})} \leq\| f\| _{W^r_2(\mathbb{R})} \leq C \| \tilde{f}\|_{ W^r_2(\mathbb{R})}, $$
(5.7)

where \(\tilde{f}(x)=f(x^{2})\).

Let \(\varphi\in C_{c}^{\infty}(\frac{1}{2},\frac{3}{2} )\) and \(\psi\in C_{c}^{\infty}(\mathbb{R}^{\ell})\), ψ(y)=0 for \(|y|>\frac{1}{2}\), \(\varphi, \psi\not\equiv0\). Fix ε∈(0,1), R>1 and define the functions n R (x,y) on \(\mathbb{R}\times\mathbb{R}^{\ell}\) by

$$n(x,y)=n_R(x,y)= \cos(Rx)\varphi(x)\psi\bigl(R^{1-\varepsilon}y \bigr)=f(x)g(y). $$

The functions n(x,y) are supported in A 1/2,2, near the vector e 1. Moreover,

$$ \hat{f} (\xi)=c \bigl(\hat{\varphi}(\xi-R)+\hat{\varphi}(\xi+R) \bigr) \quad \text{and} \quad \hat {g}(\eta)=R^{\ell(\varepsilon-1)} \hat{\psi}\bigl(R^{\varepsilon-1} \eta\bigr). $$
(5.8)

From (5.6) and (5.8) we conclude that

$$ \| n\|_{W^s_2(\mathbb{R}^{1+\ell})}\leq C_s R^{s-(1-\varepsilon)\ell /2}. $$

Set \(m(x,y)=m_{R}(x,y)=n_{R}(x^{2}, y_{1}^{2},\ldots,y_{\ell}^{2})=f(x^{2})g(y_{1}^{2}, y_{2}^{2},\ldots,y_{\ell}^{2})= \tilde{f}(x)\tilde{g}(y)\). The functions m R are supported near the vectors ±e 1. By (5.7) for s′>0 and R large we have

$$ \| \tilde{f}\|_{W_2^{s'}(\mathbb{R})} \sim\| f\|_{W_2^{s'}(\mathbb{R})} \sim R^{s'}. $$
(5.9)

Clearly,

$$ \| \tilde{g}\|_{L^2(\mathbb{R}^\ell)}=\| \hat{\tilde{g}}\| _{L^2(\mathbb{R}^\ell)} = c R^{-(1-\varepsilon) \ell/4}. $$
(5.10)

Now, (5.6) combined with (5.9) and (5.10) imply that

$$ \| m\|_{W_2^{s'}(\mathbb{R}^{1+\ell})} \geq c R^{s'-(1-\varepsilon )\ell/4} \quad \text{for large } R. $$

Summarizing,

$$ \frac{\| m\|_{W_2^{s'}(\mathbb{R}^{1+\ell})}}{\| n\|_{W_2^{s}(\mathbb{R}^{1+\ell})}} \geq c R^{s'-s+(1-\varepsilon)\ell/4}, $$

which clearly tends to infinity as R→∞ provided that s′>s−(1−ε)/4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziubański, J., Preisner, M. & Wróbel, B. Multivariate Hörmander-Type Multiplier Theorem for the Hankel transform. J Fourier Anal Appl 19, 417–437 (2013). https://doi.org/10.1007/s00041-013-9260-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9260-y

Keywords

Mathematics Subject Classification

Navigation