Journal of Fourier Analysis and Applications

, Volume 19, Issue 2, pp 225–250 | Cite as

Patterns in Rational Base Number Systems

  • Johannes F. Morgenbesser
  • Wolfgang Steiner
  • Jörg M. Thuswaldner
Article

Abstract

Number systems with a rational number a/b>1 as base have gained interest in recent years. In particular, relations to Mahler’s \(\frac{3}{2}\)-problem as well as the Josephus problem have been established. In the present paper we show that the patterns of digits in the representations of positive integers in such a number system are uniformly distributed. We study the sum-of-digits function of number systems with rational base a/b and use representations w.r.t. this base to construct normal numbers in base a in the spirit of Champernowne.

The main challenge in our proofs comes from the fact that the language of the representations of integers in these number systems is not context-free. The intricacy of this language makes it impossible to prove our results along classical lines. In particular, we use self-affine tiles that are defined in certain subrings of the adèle ring \(\mathbb{A}_{\mathbb{Q}}\) and Fourier analysis in \(\mathbb{A}_{\mathbb{Q}}\). With help of these tools we are able to reformulate our results as estimation problems for character sums.

Keywords

Rational number system Normal numbers p-adic numbers Fourier analysis, Sum-of-digits function 

Mathematics Subject Classification (2010)

11A63 28A80 52C22 

References

  1. 1.
    Allouche, J.-P., Deshouillers, J.-M., Kamae, T., Koyanagi, T.: Automata, algebraicity and distribution of sequences of powers. Ann. Inst. Fourier (Grenoble) 51(3), 687–705 (2001) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Akiyama, S., Frougny, C., Sakarovitch, J.: Powers of rationals modulo 1 and rational base number systems. Isr. J. Math. 168, 53–91 (2008) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beck, T., Brunotte, H., Scheicher, K., Thuswaldner, J.M.: Number systems and tilings over Laurent series. Math. Proc. Camb. Philos. Soc. 147(1), 9–29 (2009) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bassily, N.L., Kátai, I.: Distribution of the values of q-additive functions on polynomial sequences. Acta Math. Hung. 68(4), 353–361 (1995) MATHCrossRefGoogle Scholar
  5. 5.
    Berthé, V., Siegel, A., Steiner, W., Surer, P., Thuswaldner, J.M.: Fractal tiles associated with shift radix systems. Adv. Math. 226(1), 139–175 (2011) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cassels, J.W.S.: Global fields. In: Cassels, J.W.S., Fröhlich, A. (eds.) Algebraic Number Theory, pp. 42–84. Academic Press, London (1967) Google Scholar
  7. 7.
    Champernowne, D.G.: The construction of decimals normal in the scale of ten. J. Lond. Math. Soc. 8, 254–260 (1933) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Delange, H.: Sur la fonction sommatoire de la fonction “somme des chiffres”. Enseign. Math. (2) 21(1), 31–47 (1975) MathSciNetMATHGoogle Scholar
  9. 9.
    Dumont, J.M., Grabner, P.J., Thomas, A.: Distribution of the digits in the expansions of rational integers in algebraic bases. Acta Sci. Math. (Szeged) 65(3–4), 469–492 (1999) MathSciNetMATHGoogle Scholar
  10. 10.
    Drmota, M., Mauduit, C., Rivat, J.: Primes with an average sum of digits. Compos. Math. 145(2), 271–292 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Drmota, M., Mauduit, C., Rivat, J.: The sum-of-digits function of polynomial sequences. J. Lond. Math. Soc. (2) 84(1), 81–102 (2011) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13 (1967/1968) Google Scholar
  13. 13.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups. Integration Theory, Group Representations. Die Grundlehren der mathematischen Wissenschaften, vol. 115. Academic Press, New York (1963) MATHGoogle Scholar
  14. 14.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Die Grundlehren der mathematischen Wissenschaften, vol. 152. Springer, New York (1970) MATHGoogle Scholar
  15. 15.
    Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Madritsch, M.G.: Asymptotic normality of b-additive functions on polynomial sequences in number systems. Ramanujan J. 21(2), 181–210 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Mahler, K.: An unsolved problem on the powers of 3/2. J. Aust. Math. Soc. 8, 313–321 (1968) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Morgenbesser, J.F.: The sum of digits of squares in ℤ[i]. J. Number Theory 130(7), 1433–1469 (2010) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Madritsch, M.G., Pethő, A.: Asymptotic normality of additive functions on polynomial sequences in canonical number systems. J. Number Theory 131(9), 1553–1574 (2011) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Mauduit, C., Rivat, J.: La somme des chiffres des carrés. Acta Math. 203(1), 107–148 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Mauduit, C., Rivat, J.: Sur un problème de Gelfond: la somme des chiffres des nombres premiers. Ann. Math. (2) 171(3), 1591–1646 (2010) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Pethő, A.: On a polynomial transformation and its application to the construction of a public key cryptosystem. In: Computational Number Theory, Debrecen, 1989, pp. 31–43. de Gruyter, Berlin (1991) CrossRefGoogle Scholar
  23. 23.
    Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493 (1957) MATHCrossRefGoogle Scholar
  24. 24.
    Steiner, W., Thuswaldner, J.M.: Rational self-affine tiles. Preprint. arXiv:1203.0758v1
  25. 25.
    Tate, J.T.: Fourier analysis in number fields and Hecke’s zeta-functions. In: Cassels, J.W.S., Fröhlich, A. (eds.) Algebraic Number Theory, pp. 305–347. Academic Press, London (1967) Google Scholar
  26. 26.
    Weil, A.: Basic Number Theory, 2nd edn. Die Grundlehren der mathematischen Wissenschaften, vol. 144. Springer, Berlin (1973) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Johannes F. Morgenbesser
    • 1
  • Wolfgang Steiner
    • 2
  • Jörg M. Thuswaldner
    • 3
  1. 1.Fakultät für MathematikUniversität WienWienAustria
  2. 2.LIAFA, CNRS UMR 7089Université Paris Diderot—Paris 7Paris Cedex 13France
  3. 3.Department of Mathematics, 275 TMCBBrigham Young UniversityProvoUSA

Personalised recommendations