Advertisement

Journal of Fourier Analysis and Applications

, Volume 18, Issue 4, pp 685–716 | Cite as

A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases

  • Ben Adcock
  • Anders C. Hansen
Article

Abstract

We introduce a generalized framework for sampling and reconstruction in separable Hilbert spaces. Specifically, we establish that it is always possible to stably reconstruct a vector in an arbitrary Riesz basis from sufficiently many of its samples in any other Riesz basis. This framework can be viewed as an extension of the well-known consistent reconstruction technique (Eldar et al.). However, whilst the latter imposes stringent assumptions on the reconstruction basis, and may in practice be unstable, our framework allows for recovery in any (Riesz) basis in a manner that is completely stable.

Whilst the classical Shannon Sampling Theorem is a special case of our theorem, this framework allows us to exploit additional information about the approximated vector (or, in this case, function), for example sparsity or regularity, to design a reconstruction basis that is better suited. Examples are presented illustrating this procedure.

Keywords

Sampling theory Stable reconstruction Shannon sampling theorem Infinite matrices Hilbert space Wavelets 

Mathematics Subject Classification

94A20 65T99 47A99 42C40 42A10 

Notes

Acknowledgements

The authors would like to thank Emmanuel Candès and Hans G. Feichtinger for valuable discussions and input.

References

  1. 1.
    Adcock, B., Hansen, A.C.: Generalized sampling and infinite dimensional compressed sensing. Technical report NA2011/02, DAMTP, University of Cambridge (submitted) Google Scholar
  2. 2.
    Adcock, B., Hansen, A.C.: Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients. Technical report NA2011/12, DAMTP, University of Cambridge (submitted) Google Scholar
  3. 3.
    Adcock, B., Hansen, A.C.: Sharp bounds, optimality and a geometric interpretation for generalised sampling in Hilbert spaces. Technical report NA2011/10, DAMTP, University of Cambridge (submitted) Google Scholar
  4. 4.
    Adcock, B., Hansen, A.C.: Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. (to appear) Google Scholar
  5. 5.
    Adcock, B., Hansen, A.C., Herrholz, E., Teschke, G.: Generalized sampling: extension to frames and ill-posed problems. Technical report NA2011/17, DAMTP, University of Cambridge (submitted) Google Scholar
  6. 6.
    Adcock, B., Hansen, A.C., Herrholz, E., Teschke, G.: Generalized sampling, infinite-dimensional compressed sensing, and semi-random sampling for asymptotically incoherent dictionaries. Technical report NA2011/13, DAMTP, University of Cambridge (submitted) Google Scholar
  7. 7.
    Aldroubi, A.: Oblique projections in atomic spaces. Proc. Am. Math. Soc. 124(7), 2051–2060 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Aldroubi, A., Feichtinger, H.: Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: the L p-theory. Proc. Am. Math. Soc. 126(9), 2677–2686 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Böttcher, A.: Infinite matrices and projection methods. In: Lectures on Operator Theory and Its Applications, Waterloo, ON, 1994. Fields Inst. Monogr., vol. 3, pp. 1–72. Amer. Math. Soc., Providence (1996) Google Scholar
  10. 10.
    Candès, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002) zbMATHCrossRefGoogle Scholar
  11. 11.
    Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004) zbMATHCrossRefGoogle Scholar
  12. 12.
    Eldar, Y.: Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl. 9(1), 77–96 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Eldar, Y.: Sampling without input constraints: consistent reconstruction in arbitrary spaces. In: Zayed, A.I., Benedetto, J.J. (eds.) Sampling, Wavelets and Tomography, pp. 33–60. Birkhäuser, Boston (2004) CrossRefGoogle Scholar
  14. 14.
    Eldar, Y., Werther, T.: General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets Multiresolut. Inf. Process. 3(3), 347 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Feichtinger, H., Pesenson, I.: Recovery of band-limited functions on manifolds by an iterative algorithm. In: Wavelets, Frames and Operator Theory. Contemp. Math., vol. 345, pp. 137–152. Amer. Math. Soc., Providence (2004) CrossRefGoogle Scholar
  16. 16.
    Feichtinger, H.G., Pandey, S.S.: Recovery of band-limited functions on locally compact abelian groups from irregular samples. Czechoslov. Math. J. 53(128), 249–264 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gröchenig, K., Rzeszotnik, Z., Strohmer, T.: Convergence analysis of the finite section method and Banach algebras of matrices. Integral Equ. Oper. Theory 67(2), 183–202 (2010) zbMATHCrossRefGoogle Scholar
  18. 18.
    Hagen, R., Roch, S., Silbermann, B.: C -Algebras and Numerical Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 236. Dekker, New York (2001) zbMATHGoogle Scholar
  19. 19.
    Hansen, A.C.: On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal. 254(8), 2092–2126 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hansen, A.C.: On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. J. Am. Math. Soc. 24(1), 81–124 (2011) zbMATHCrossRefGoogle Scholar
  21. 21.
    Heinemeyer, E., Lindner, M., Potthast, R.: Convergence and numerics of a multisection method for scattering by three-dimensional rough surfaces. SIAM J. Numer. Anal. 46(4), 1780–1798 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hrycak, T., Gröchenig, K.: Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys. 229(3), 933–946 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Jerri, A.: The Gibbs Phenomenon in Fourier Analysis, Splines, and Wavelet Approximations. Springer, Berlin (1998) zbMATHGoogle Scholar
  24. 24.
    Jerri, A.J.: The Shannon sampling theorem: its various extensions and applications: A tutorial review. Proc. IEEE 65, 1565–1596 (1977) zbMATHCrossRefGoogle Scholar
  25. 25.
    Jung, J.-H., Shizgal, B.D.: Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon. J. Comput. Appl. Math. 172(1), 131–151 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kammler, D.W.: A First Course in Fourier Analysis, 2nd edn. Cambridge University Press, Cambridge (2007) zbMATHGoogle Scholar
  27. 27.
    Lindner, M.: Infinite Matrices and Their Finite Sections. Frontiers in Mathematics. Birkhäuser, Basel (2006). An introduction to the limit operator method zbMATHGoogle Scholar
  28. 28.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press Inc., San Diego (1998) zbMATHGoogle Scholar
  29. 29.
    Nyquist, H.: Certain topics in telegraph transmission theory. Trans. AIEE 47, 617–644 (1928) Google Scholar
  30. 30.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tadmor, E.: Filters, mollifiers and the computation of the Gibbs’ phenomenon. Acta Numer. 16, 305–378 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Unser, M.: Sampling—50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000) CrossRefGoogle Scholar
  33. 33.
    Unser, M., Aldroubi, A.: A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process. 42(11), 2915–2925 (1994) CrossRefGoogle Scholar
  34. 34.
    Whittaker, E.T.: On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinb. 35, 181–194 (1915) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations