Journal of Fourier Analysis and Applications

, Volume 18, Issue 2, pp 266–286 | Cite as

Almost Everywhere Convergent Fourier Series

  • M. J. Carro
  • M. Mastyło
  • L. Rodríguez-Piazza


We study some properties of the logconvex quasi-Banach space QA defined by Arias-de-Reyna and show several applications to convergence of Fourier series. In particular, we describe the Banach envelope of QA and prove that there exists a Lorentz space strictly bigger than the Antonov space in which the almost everywhere convergence of the Fourier series holds. We also give a necessary condition for a Banach rearrangement invariant space X to be contained in QA. As an application, we show that for some classes of Banach spaces there is no the largest Banach space in a given class which is contained in QA.


Fourier series Almost everywhere convergence Lorentz spaces Banach envelope Rearrangement invariant spaces 

Mathematics Subject Classification (2000)

47A30 47A63 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonov, N.Y.: Convergence of Fourier series. East J. Approx. 2, 187–196 (1996) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arias-de-Reyna, J.: Pointwise convergence of Fourier series. J. Lond. Math. Soc. 65, 139–153 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988) zbMATHGoogle Scholar
  4. 4.
    Calderón, A.P.: Spaces between L 1 and L and the theorem of Marcinkiewicz. Stud. Math. 26, 273–299 (1966) zbMATHGoogle Scholar
  5. 5.
    Carleson, L.: Convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Carro, M.J., Martín, J.: Endpoint estimates from restricted rearrangement inequalities. Rev. Mat. Iberoam. 20(1), 131–150 (2004) zbMATHCrossRefGoogle Scholar
  7. 7.
    Hunt, R.A.: On the convergence of Fourier series. In: Orthogonal Expansions and Their Continuous Analogues, Proc. Conf., Edwardsville, Ill, 1967, pp. 235–255. Southern Illinois Univ. Press, Carbondale (1968) Google Scholar
  8. 8.
    Kalton, N.J.: Convexity, type and the three space problem. Stud. Math. 69(3), 247–287 (1980/1981) MathSciNetGoogle Scholar
  9. 9.
    Kalton, N.J.: Lattice Structures on Banach Spaces. Memoirs Amer. Math. Soc., vol. 103(493) (1993) Google Scholar
  10. 10.
    Kolmogorov, A.N.: Une série de Fourier-Lebesgue divergente presque partout. Fundam. Math. 4, 324–328 (1923) Google Scholar
  11. 11.
    Konyagin, S.V.: On divergence of trigonometric Fourier series everywhere. C. R. Acad. Sci. Paris, Ser. I Math. 329(8), 693–697 (1999) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Krein, S.G., Petunin, Ju.I., Semenov, E.M.: Interpolation of Linear Operators. Translations of Mathematical Monographs, vol. 54. American Mathematical Society, Providence (1982) Google Scholar
  13. 13.
    Luzin, N.: Sur la convergence des séries trigonométries de Fourier. C. R. Acad. Sci. Paris 156, 1655–1658 (1913) Google Scholar
  14. 14.
    Mastyło, M.: Lattice structures on some Banach spaces. Proc. Am. Math. Soc. (2011). doi: 10.1090/S0002-9939-2011-11151-1. Article electronically published on 16 August 2011 Google Scholar
  15. 15.
    Mitjagin, B.S.: An interpolation theorem for modular spaces. Mat. Sb. 66(108), 473–482 (1965) (Russian) MathSciNetGoogle Scholar
  16. 16.
    Sjölin, P.: An inequality of Paley and convergence a.e. of Walsh-Fourier series. Ark. Math. 7, 551–570 (1969) zbMATHCrossRefGoogle Scholar
  17. 17.
    Soria, F.: On an extrapolation theorem of Carleson-Sjölin with applications to a.e. convergence of Fourier series. Ark. Math. 94(3), 235–244 (1989) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zygmund, A.: Trigonometric Series, vols. I, II, 2nd edn. Cambridge University Press, New York (1959). Vol. I: xii+383 pp.; Vol. II: vii+354 pp. zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. J. Carro
    • 1
  • M. Mastyło
    • 2
  • L. Rodríguez-Piazza
    • 3
  1. 1.Departament de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain
  2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz University Poznań, and Institute of Mathematics Polish Academy of Sciences (Poznań branch)PoznańPoland
  3. 3.Faculty of MathematicsUniversity of SevillaSevillaSpain

Personalised recommendations