Journal of Fourier Analysis and Applications

, Volume 18, Issue 2, pp 240–265 | Cite as

Nontangential Limits and Fatou-Type Theorems on Post-Critically Finite Self-Similar Sets

  • Ricardo A. SáenzEmail author


In this paper we study the boundary limit properties of harmonic functions on ℝ+×K, the solutions u(t,x) to the Poisson equation
$$\frac{\partial^2 u}{\partial t^2} + \Delta u = 0,$$
where K is a p.c.f. set and Δ its Laplacian given by a regular harmonic structure. In particular, we prove the existence of nontangential limits of the corresponding Poisson integrals, and the analogous results of the classical Fatou theorems for bounded and nontangentially bounded harmonic functions.


Fractals P.c.f. sets Poisson integrals Boundary behavior of harmonic functions 

Mathematics Subject Classification (2000)

28A80 31B2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, B., Smith, A.S., Strichartz, R.S., Teplyaev, A.: The spectrum of the Laplacian on the pentagasket. In: Trends in Mathematics: Fractals in Graz 2001, pp. 1–24. Birkhäuser, Basel (2003) CrossRefGoogle Scholar
  2. 2.
    Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics, vol. 137. Springer, New York (2001) zbMATHGoogle Scholar
  3. 3.
    Barlow, M.T.: Diffusions on fractals. In: Lectures on Probability Theory and Statistics, Saint-Flour, 1995, pp. 1–121. Springer, Berlin (1998) CrossRefGoogle Scholar
  4. 4.
    Constantin, S., Strichartz, R.S., Wheeler, M.: Analysis of the Laplacian and Spectral Operators on the Vicsek Set. arXiv:0909.1066 (2009)
  5. 5.
    Dalrymple, K., Strichartz, R.S., Vinson, J.P.: Fractal differential equations on the Sierpinski gasket. J. Fourier Anal. Appl. 5, 203–284 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fitzsimmons, P.J., Hambly, B.M., Kumagai, T.: Transition density estimates for Brownian motion on affine nested fractals. Commun. Math. Phys. 165(3), 595–620 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ionescu, M., Rogers, L.: Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. arXiv:1002.2011 (2010)
  8. 8.
    Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Am. Math. Soc. 335(2), 721–755 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001) zbMATHCrossRefGoogle Scholar
  10. 10.
    Kigami, J., Lapidus, M.L.: Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Commun. Math. Phys. 158(1), 93–125 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kumagai, T.: Regularity, closedness and spectral dimensions of the Dirichlet forms on P.C.F. self-similar sets. J. Math. Kyoto Univ. 33(3), 765–786 (1993) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lindstrom, T.: Brownian Motion on Nested Fractals. American Mathematical Society, Providence (1990) Google Scholar
  13. 13.
    Okoudjou, K., Rogers, L., Strichartz, R.: Szegö limit theorems on the Sierpiǹski gasket. J. Fourier Anal. Appl. 16, 434–447 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Pelander, A.: Solvability of differential equations on open subsets of the Sierpiǹski gasket. J. Anal. Math. 102, 359–369 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Rogers, L.G., Strichartz, R.: Distribution theory on p.c.f. fractals. J. Anal. Math. 112, 137–192 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Sáenz, R.A.: Maximal functions related to the effective resistance metric on post-critically finite self-similar sets (2002, unpublished) Google Scholar
  17. 17.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970) zbMATHGoogle Scholar
  18. 18.
    Strichartz, R.S.: Function spaces on fractals. J. Funct. Anal. 198(1), 43–83 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Strichartz, R.: Solvability for differential equations on fractals. J. Anal. Math. 96, 247–267 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad de ColimaColimaMexico

Personalised recommendations